Volumetric flow estimation in vivo and in vitro using pulsed-Doppler ultrasound
The measurement of volumetric blood flow in small vessels in vitro and in vivo poses a significant technological challenge. In this study, two pulsatile flow models were developed, one with a 3.2-mm lumen diameter and one with a 12.7-mm lumen diameter, to assess the accuracy of volumetric flow estim...
Gespeichert in:
Veröffentlicht in: | Ultrasound in medicine & biology 1996, Vol.22 (5), p.591-603 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 603 |
---|---|
container_issue | 5 |
container_start_page | 591 |
container_title | Ultrasound in medicine & biology |
container_volume | 22 |
creator | Holland, Christy K. Clancy, Michael J. Taylor, Kenneth J.W. Alderman, Jonathan L. Purushothaman, Kailasnath McCauley, Thomas R. |
description | The measurement of volumetric blood flow in small vessels
in vitro and
in vivo poses a significant technological challenge. In this study, two pulsatile flow models were developed, one with a 3.2-mm lumen diameter and one with a 12.7-mm lumen diameter, to assess the accuracy of volumetric flow estimation of two pulsed-Doppler devices, a Crystal Biotech VF1 20-MHz system with either a cuff-mounted or a needlemounted probe and an Advanced Technology Laboratories Ultramark 9 High Definition Imaging
® system with a 5-MHz linear array transducer. The VF1 volumetric flow error was measured in the 3.2-mm phantom over a variety of pulsatile and continuous waveforms. The accuracy of the VF1 was also tested in porcine femoral and renal arteries. VF1 volumetric flow error ranged from 4.8% to 54.3% in the
in vivo studies. The ATL demonstrated similar volumetric flow errors in the porcine femoral artery (∼3.2 mm diameter), but these errors were reduced to ≤ 17.4% in the 12.7-mm-diameter
in vitro flow model. |
doi_str_mv | 10.1016/0301-5629(96)00046-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78439436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0301562996000464</els_id><sourcerecordid>15733320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-92b1b4e248d13cebdb245be3c7aa7bb81b5235534c145ffe76f8acc617717db03</originalsourceid><addsrcrecordid>eNqFkM1q3DAUhUVomEzSvkEKXpSSLpxI1p-9CZRJmwQGZpOW7oR-rouCx3Ike0LevjIzzDJd6Yrz3cPlQ-iS4GuCibjBFJOSi6q5asQ3jDETJTtBS1LLpqwa8ucDWh6RM3Se0nOGpKBygRZ1LTjnYok2v0M3bWGM3hZtF14LSKPf6tGHvvB9sfO7UOje7ecxhmJKvv9bDFOXwJV3YRg6iMXUjVGnMPXuIzptdc4-Hd4L9Ovnj6fVQ7ne3D-uvq9LywQdy6YyxDCoWO0ItWCcqRg3QK3UWhpTE8MryjllljDetiBFW2trBZGSSGcwvUBf971DDC9TPlptfbLQdbqHMCUla0YbRsV_QcIlpbSaG9ketDGkFKFVQ8wm4psiWM3C1WxTzTZVkz-zcMXy2udD_2S24I5LB8M5_3LIdbK6a6PurU9HjBLRkIpn7HaPQZa28xBVsh56C85HsKNywb9_xz_4l5zN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15733320</pqid></control><display><type>article</type><title>Volumetric flow estimation in vivo and in vitro using pulsed-Doppler ultrasound</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Holland, Christy K. ; Clancy, Michael J. ; Taylor, Kenneth J.W. ; Alderman, Jonathan L. ; Purushothaman, Kailasnath ; McCauley, Thomas R.</creator><creatorcontrib>Holland, Christy K. ; Clancy, Michael J. ; Taylor, Kenneth J.W. ; Alderman, Jonathan L. ; Purushothaman, Kailasnath ; McCauley, Thomas R.</creatorcontrib><description>The measurement of volumetric blood flow in small vessels
in vitro and
in vivo poses a significant technological challenge. In this study, two pulsatile flow models were developed, one with a 3.2-mm lumen diameter and one with a 12.7-mm lumen diameter, to assess the accuracy of volumetric flow estimation of two pulsed-Doppler devices, a Crystal Biotech VF1 20-MHz system with either a cuff-mounted or a needlemounted probe and an Advanced Technology Laboratories Ultramark 9 High Definition Imaging
® system with a 5-MHz linear array transducer. The VF1 volumetric flow error was measured in the 3.2-mm phantom over a variety of pulsatile and continuous waveforms. The accuracy of the VF1 was also tested in porcine femoral and renal arteries. VF1 volumetric flow error ranged from 4.8% to 54.3% in the
in vivo studies. The ATL demonstrated similar volumetric flow errors in the porcine femoral artery (∼3.2 mm diameter), but these errors were reduced to ≤ 17.4% in the 12.7-mm-diameter
in vitro flow model.</description><identifier>ISSN: 0301-5629</identifier><identifier>EISSN: 1879-291X</identifier><identifier>DOI: 10.1016/0301-5629(96)00046-4</identifier><identifier>PMID: 8865556</identifier><identifier>CODEN: USMBA3</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Animals ; Biological and medical sciences ; Blood flow ; Blood Flow Velocity ; Cardiovascular system ; Disease Models, Animal ; Doppler flow cuff ; Doppler ultrasound ; Female ; Femoral Artery - diagnostic imaging ; Femoral Artery - physiopathology ; Flow measurement ; Flow model ; Flow phantom ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Pulsatile Flow ; Renal Artery - diagnostic imaging ; Renal Artery - physiopathology ; Shock, Hemorrhagic - chemically induced ; Shock, Hemorrhagic - diagnostic imaging ; Shock, Hemorrhagic - physiopathology ; Swine ; Ultrasonic investigative techniques ; Ultrasonography, Doppler, Pulsed ; Volume blood flow ; Volumetric flow estimation</subject><ispartof>Ultrasound in medicine & biology, 1996, Vol.22 (5), p.591-603</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-92b1b4e248d13cebdb245be3c7aa7bb81b5235534c145ffe76f8acc617717db03</citedby><cites>FETCH-LOGICAL-c463t-92b1b4e248d13cebdb245be3c7aa7bb81b5235534c145ffe76f8acc617717db03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0301-5629(96)00046-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,4009,27902,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3169125$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8865556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holland, Christy K.</creatorcontrib><creatorcontrib>Clancy, Michael J.</creatorcontrib><creatorcontrib>Taylor, Kenneth J.W.</creatorcontrib><creatorcontrib>Alderman, Jonathan L.</creatorcontrib><creatorcontrib>Purushothaman, Kailasnath</creatorcontrib><creatorcontrib>McCauley, Thomas R.</creatorcontrib><title>Volumetric flow estimation in vivo and in vitro using pulsed-Doppler ultrasound</title><title>Ultrasound in medicine & biology</title><addtitle>Ultrasound Med Biol</addtitle><description>The measurement of volumetric blood flow in small vessels
in vitro and
in vivo poses a significant technological challenge. In this study, two pulsatile flow models were developed, one with a 3.2-mm lumen diameter and one with a 12.7-mm lumen diameter, to assess the accuracy of volumetric flow estimation of two pulsed-Doppler devices, a Crystal Biotech VF1 20-MHz system with either a cuff-mounted or a needlemounted probe and an Advanced Technology Laboratories Ultramark 9 High Definition Imaging
® system with a 5-MHz linear array transducer. The VF1 volumetric flow error was measured in the 3.2-mm phantom over a variety of pulsatile and continuous waveforms. The accuracy of the VF1 was also tested in porcine femoral and renal arteries. VF1 volumetric flow error ranged from 4.8% to 54.3% in the
in vivo studies. The ATL demonstrated similar volumetric flow errors in the porcine femoral artery (∼3.2 mm diameter), but these errors were reduced to ≤ 17.4% in the 12.7-mm-diameter
in vitro flow model.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Blood flow</subject><subject>Blood Flow Velocity</subject><subject>Cardiovascular system</subject><subject>Disease Models, Animal</subject><subject>Doppler flow cuff</subject><subject>Doppler ultrasound</subject><subject>Female</subject><subject>Femoral Artery - diagnostic imaging</subject><subject>Femoral Artery - physiopathology</subject><subject>Flow measurement</subject><subject>Flow model</subject><subject>Flow phantom</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Pulsatile Flow</subject><subject>Renal Artery - diagnostic imaging</subject><subject>Renal Artery - physiopathology</subject><subject>Shock, Hemorrhagic - chemically induced</subject><subject>Shock, Hemorrhagic - diagnostic imaging</subject><subject>Shock, Hemorrhagic - physiopathology</subject><subject>Swine</subject><subject>Ultrasonic investigative techniques</subject><subject>Ultrasonography, Doppler, Pulsed</subject><subject>Volume blood flow</subject><subject>Volumetric flow estimation</subject><issn>0301-5629</issn><issn>1879-291X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1q3DAUhUVomEzSvkEKXpSSLpxI1p-9CZRJmwQGZpOW7oR-rouCx3Ike0LevjIzzDJd6Yrz3cPlQ-iS4GuCibjBFJOSi6q5asQ3jDETJTtBS1LLpqwa8ucDWh6RM3Se0nOGpKBygRZ1LTjnYok2v0M3bWGM3hZtF14LSKPf6tGHvvB9sfO7UOje7ecxhmJKvv9bDFOXwJV3YRg6iMXUjVGnMPXuIzptdc4-Hd4L9Ovnj6fVQ7ne3D-uvq9LywQdy6YyxDCoWO0ItWCcqRg3QK3UWhpTE8MryjllljDetiBFW2trBZGSSGcwvUBf971DDC9TPlptfbLQdbqHMCUla0YbRsV_QcIlpbSaG9ketDGkFKFVQ8wm4psiWM3C1WxTzTZVkz-zcMXy2udD_2S24I5LB8M5_3LIdbK6a6PurU9HjBLRkIpn7HaPQZa28xBVsh56C85HsKNywb9_xz_4l5zN</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Holland, Christy K.</creator><creator>Clancy, Michael J.</creator><creator>Taylor, Kenneth J.W.</creator><creator>Alderman, Jonathan L.</creator><creator>Purushothaman, Kailasnath</creator><creator>McCauley, Thomas R.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>1996</creationdate><title>Volumetric flow estimation in vivo and in vitro using pulsed-Doppler ultrasound</title><author>Holland, Christy K. ; Clancy, Michael J. ; Taylor, Kenneth J.W. ; Alderman, Jonathan L. ; Purushothaman, Kailasnath ; McCauley, Thomas R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-92b1b4e248d13cebdb245be3c7aa7bb81b5235534c145ffe76f8acc617717db03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Blood flow</topic><topic>Blood Flow Velocity</topic><topic>Cardiovascular system</topic><topic>Disease Models, Animal</topic><topic>Doppler flow cuff</topic><topic>Doppler ultrasound</topic><topic>Female</topic><topic>Femoral Artery - diagnostic imaging</topic><topic>Femoral Artery - physiopathology</topic><topic>Flow measurement</topic><topic>Flow model</topic><topic>Flow phantom</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Pulsatile Flow</topic><topic>Renal Artery - diagnostic imaging</topic><topic>Renal Artery - physiopathology</topic><topic>Shock, Hemorrhagic - chemically induced</topic><topic>Shock, Hemorrhagic - diagnostic imaging</topic><topic>Shock, Hemorrhagic - physiopathology</topic><topic>Swine</topic><topic>Ultrasonic investigative techniques</topic><topic>Ultrasonography, Doppler, Pulsed</topic><topic>Volume blood flow</topic><topic>Volumetric flow estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holland, Christy K.</creatorcontrib><creatorcontrib>Clancy, Michael J.</creatorcontrib><creatorcontrib>Taylor, Kenneth J.W.</creatorcontrib><creatorcontrib>Alderman, Jonathan L.</creatorcontrib><creatorcontrib>Purushothaman, Kailasnath</creatorcontrib><creatorcontrib>McCauley, Thomas R.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasound in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holland, Christy K.</au><au>Clancy, Michael J.</au><au>Taylor, Kenneth J.W.</au><au>Alderman, Jonathan L.</au><au>Purushothaman, Kailasnath</au><au>McCauley, Thomas R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volumetric flow estimation in vivo and in vitro using pulsed-Doppler ultrasound</atitle><jtitle>Ultrasound in medicine & biology</jtitle><addtitle>Ultrasound Med Biol</addtitle><date>1996</date><risdate>1996</risdate><volume>22</volume><issue>5</issue><spage>591</spage><epage>603</epage><pages>591-603</pages><issn>0301-5629</issn><eissn>1879-291X</eissn><coden>USMBA3</coden><abstract>The measurement of volumetric blood flow in small vessels
in vitro and
in vivo poses a significant technological challenge. In this study, two pulsatile flow models were developed, one with a 3.2-mm lumen diameter and one with a 12.7-mm lumen diameter, to assess the accuracy of volumetric flow estimation of two pulsed-Doppler devices, a Crystal Biotech VF1 20-MHz system with either a cuff-mounted or a needlemounted probe and an Advanced Technology Laboratories Ultramark 9 High Definition Imaging
® system with a 5-MHz linear array transducer. The VF1 volumetric flow error was measured in the 3.2-mm phantom over a variety of pulsatile and continuous waveforms. The accuracy of the VF1 was also tested in porcine femoral and renal arteries. VF1 volumetric flow error ranged from 4.8% to 54.3% in the
in vivo studies. The ATL demonstrated similar volumetric flow errors in the porcine femoral artery (∼3.2 mm diameter), but these errors were reduced to ≤ 17.4% in the 12.7-mm-diameter
in vitro flow model.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>8865556</pmid><doi>10.1016/0301-5629(96)00046-4</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-5629 |
ispartof | Ultrasound in medicine & biology, 1996, Vol.22 (5), p.591-603 |
issn | 0301-5629 1879-291X |
language | eng |
recordid | cdi_proquest_miscellaneous_78439436 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Biological and medical sciences Blood flow Blood Flow Velocity Cardiovascular system Disease Models, Animal Doppler flow cuff Doppler ultrasound Female Femoral Artery - diagnostic imaging Femoral Artery - physiopathology Flow measurement Flow model Flow phantom Investigative techniques, diagnostic techniques (general aspects) Medical sciences Pulsatile Flow Renal Artery - diagnostic imaging Renal Artery - physiopathology Shock, Hemorrhagic - chemically induced Shock, Hemorrhagic - diagnostic imaging Shock, Hemorrhagic - physiopathology Swine Ultrasonic investigative techniques Ultrasonography, Doppler, Pulsed Volume blood flow Volumetric flow estimation |
title | Volumetric flow estimation in vivo and in vitro using pulsed-Doppler ultrasound |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volumetric%20flow%20estimation%20in%20vivo%20and%20in%20vitro%20using%20pulsed-Doppler%20ultrasound&rft.jtitle=Ultrasound%20in%20medicine%20&%20biology&rft.au=Holland,%20Christy%20K.&rft.date=1996&rft.volume=22&rft.issue=5&rft.spage=591&rft.epage=603&rft.pages=591-603&rft.issn=0301-5629&rft.eissn=1879-291X&rft.coden=USMBA3&rft_id=info:doi/10.1016/0301-5629(96)00046-4&rft_dat=%3Cproquest_cross%3E15733320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15733320&rft_id=info:pmid/8865556&rft_els_id=0301562996000464&rfr_iscdi=true |