Radioligand-dependent discrepancy in agonist affinities enhanced by mutations in the kappa-opioid receptor

A series of kappa/mu receptor chimeras and a number of kappa receptors substituted in the second transmembrane segment (TM-II) were investigated using as radioligands, respectively, the kappa-selective agonist [3H]C1977 and the nonselective opioid antagonist [3H]diprenorphine (DIP). All of the recep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmacology 1996-10, Vol.50 (4), p.977-984
Hauptverfasser: Hjorth, S A, Thirstrup, K, Schwartz, T W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of kappa/mu receptor chimeras and a number of kappa receptors substituted in the second transmembrane segment (TM-II) were investigated using as radioligands, respectively, the kappa-selective agonist [3H]C1977 and the nonselective opioid antagonist [3H]diprenorphine (DIP). All of the receptor constructs bound [3H]DIP with similar and high affinity, whereas the apparent affinity of the nonpeptide agonist C1977, when estimated in competition binding with the antagonist [3H]DIP, was impaired between 42- and > 500-fold in the kappa/mu chimeras and between 64- and 153-fold in three of the kappa receptor mutants that had been substituted in the TM-II segment. However, homologous competition binding experiments, using [3H]C1977 as radioligand, showed that the high affinity binding of this nonpeptide agonist was in fact not impaired in four of the kappa/mu chimeras and in three TM-II substituted kappa receptors compared with the wild-type kappa receptor. In all cases in which mutations decreased the apparent affinity of C1977 without affecting its actual affinity, as determined in homologous assays using [3H]C1977, the calculated number of receptor sites (Bmax) was decreased. In three of the kappa/mu constructs, binding of [3H]C1977 was undetectable, indicating that in these chimeras the affinity of the nonpeptide agonist had actually been affected. Also, for the kappa-selective peptide agonist dynorphin A(1-8), the measured affinity for the receptor mutants was strongly dependent on whether it was determined using the antagonist [3H]DIP or the agonist [3H]C1977 in that < or = 800-fold higher Ki values were determined in competition with the antagonist. It is concluded that mutations in the kappa-opioid receptor can cause large discrepancies between the affinity determined for agonists in homologous versus heterologous competition binding assays and that this pattern, which is compatible with a partial uncoupling of receptors, is observed in surprisingly many types of receptor mutations.
ISSN:0026-895X
1521-0111