Failure of non-selective inhibition of arachidonic acid metabolism to ameliorate hyperoxic lung injury

We have previously reported that bronchoalveolar lavage fluid cyclo-oxygenase products of arachidonic acid (AA) metabolism increase prior to the development of significant hyperoxic lung injury. To further assess the role of AA metabolites in the development of hyperoxic lung injury, we have utilize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Prostaglandins, leukotrienes and essential fatty acids leukotrienes and essential fatty acids, 1988-06, Vol.32 (3), p.145-153
Hauptverfasser: HAGEMAN, J. R, ZEMAITIS, J, HOLTZMAN, R. B, LEE, S. E, SMITH, L. J, HUNT, C. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have previously reported that bronchoalveolar lavage fluid cyclo-oxygenase products of arachidonic acid (AA) metabolism increase prior to the development of significant hyperoxic lung injury. To further assess the role of AA metabolites in the development of hyperoxic lung injury, we have utilized this same model of hyperoxic lung injury and administered either indomethacin (an inhibitor of the cyclo-oxygenase pathway of AA metabolism) or dexamethasone (inhibitor of AA release). A total of 46 adult rabbits were exposed to greater than 95% oxygen for 65 hours. Fourteen animals were given either 2 or 3 mg/kg/day indomethacin, 7 served as controls: 18 animals were given either 0.5 or 1.0 mg/kg/day of dexamethasone, 7 served as controls. The surviving animals were sacrificed after 65 hours of hyperoxia and bronchoalveolar lavage of the left lung was done; the right lung was examined by light microscopy. Treatment with indomethacin or dexamethasone failed to ameliorate the hyperoxic lung injury process. However, in both the indomethacin and dexamethasone treatment groups, significant suppression of 6-keto-PGF1 alpha, a PGI2 metabolite, was observed. Some suppression of TXB2 production was observed, but there was no evidence of any decrease in leukotriene production. We postulate that failure to ameliorate hyperoxic lung injury with either indomethacin or dexamethasone therapy was related to significant suppression of PGI2, a potentially protective AA metabolite, and/or to failure to significantly decrease production of potential pathogenic participants, such as TXA2 or LTB4.
ISSN:0952-3278
1532-2823