Nonlinear analysis of biological systems using short M-sequences and sparse-stimulation techniques

The m-sequence pseudorandom signal has been shown to be a more effective probing signal than traditional Gaussian white noise for studying nonlinear biological systems using cross-correlation techniques. The effectiveness is evidenced by the high signal-to-noise (S/N) ratio and speed of data acquisi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 1996-07, Vol.24 (4), p.513-536
Hauptverfasser: CHEN, H.-W, AINE, C. J, BEST, E, RANKEN, D, HARRISON, R. R, FLYNN, E. R, WOOD, C. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The m-sequence pseudorandom signal has been shown to be a more effective probing signal than traditional Gaussian white noise for studying nonlinear biological systems using cross-correlation techniques. The effectiveness is evidenced by the high signal-to-noise (S/N) ratio and speed of data acquisition. However, the "anomalies" that occur in the estimations of the cross-correlations represent an obstacle that prevents m-sequences from being more widely used for studying nonlinear systems. The sparse-stimulation method for measuring system kernels can help alleviate estimation errors caused by anomalies. In this paper, a "padded sparse-stimulation" method is evaluated, a modification of the "inserted sparse-stimulation" technique introduced by Sutter, along with a short m-sequence as a probing signal. Computer simulations show that both the "padded" and "inserted" methods can effectively eliminate the anomalies in the calculation of the second-order kernel, even when short m-sequences were used (length of 1023 for a binary m-sequence, and 728 for a ternary m-sequence). Preliminary experimental data from neuromagnetic studies of the human visual system are also presented, demonstrating that the system kernels can be measured with high signal-to-noise (S/N) ratios using short m-sequences.
ISSN:0090-6964
1573-9686
DOI:10.1007/BF02648113