Spectral characteristics of heart period variability during cold face stress and shock avoidance in normal subjects
Spectral analysis of heart period variability was used to examine autonomic cardiac control in several tasks used in experimental and clinical assessments of autonomic nervous system function. Cardiovascular measures were recorded in healthy humans during quiet rest, reaction time shock-avoidance, c...
Gespeichert in:
Veröffentlicht in: | Clinical autonomic research 1996-06, Vol.6 (3), p.147-152 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spectral analysis of heart period variability was used to examine autonomic cardiac control in several tasks used in experimental and clinical assessments of autonomic nervous system function. Cardiovascular measures were recorded in healthy humans during quiet rest, reaction time shock-avoidance, cold face stress, and combined shock-avoidance/cold face stress. Shock-avoidance was characterized by sympathetic beta-adrenergic dominance, as evidenced by (1) shorter heart periods, (2) less high-frequency spectral power, (3) elevated low-frequency power, (4) increased ratios of low- to high-frequency power, and (5) a steep regression line fitted to the log-log plot of the power spectra. Cold face stress yielded (1) longer heart periods, (2) more high-frequency power, (3) decreased low-frequency spectral power, and (4) a flat regression slope, indicating vagal dominance. Quiet rest appeared as mildly vagal, with less total spectral power, and the combination task elicited a mixed vagal-sympathetic pattern. These results are discussed in the context of (1) the autonomic underpinnings of low-frequency power, (2) the autonomic effects of facial cooling, and (3) the utility of spectral analysis of heart period variability during autonomic challenge tasks for basic research and clinical application. |
---|---|
ISSN: | 0959-9851 1619-1560 |
DOI: | 10.1007/BF02281901 |