Effects of human neutrophil chemotaxis across human endothelial cell monolayers on the permeability of these monolayers to ions and macromolecules
We have developed a method for studying the permeability properties of human endothelia in vitro. Human umbilical vein endothelial cells (HUVEC) were cultured on a substrate of human amnion. Confluent monolayers of these cells demonstrated 6–12 ωcm2 of electrical resistance (a measure of their perme...
Gespeichert in:
Veröffentlicht in: | Journal of cellular physiology 1988-06, Vol.135 (3), p.355-366 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have developed a method for studying the permeability properties of human endothelia in vitro. Human umbilical vein endothelial cells (HUVEC) were cultured on a substrate of human amnion. Confluent monolayers of these cells demonstrated 6–12 ωcm2 of electrical resistance (a measure of their permeability to ions) and restricted the transendothelial passage of albumin from their apical to their basal surface. To determine whether leukocyte emigration alters endothelial permeability in this model, we examined the effects of migrating human polymorphonuclear leukocytes (PMN) on these two parameters. Few PMN migrated across the HUVEC monolayers in the absence of chemoattractants. In response to chemoattractants, PMN migration through HUVEC monolayers was virtually complete within 10 minutes and occurred at random locations throughout the monolayer. PMN migrated across the monolayer via the paracellular pathway. Although one PMN migrated across the monolayer for each HUVEC, PMN migration induced no change in electrical resistance or albumin perme‐ability of these monolayers. At this PMN:HUVEC ratio, these permeability findings were correlated morphologically to measurements that HUVEC paracellular pathway size increases by less than 0.22% with PMN migration. This increase is insufficient to effect a measurable change in the electrical resistance of the endothelial cell monolayer. These findings demonstrate that increased permeability of cultured endothelial cell monolayers is not a necessary consequence of PMN emigration. |
---|---|
ISSN: | 0021-9541 1097-4652 |
DOI: | 10.1002/jcp.1041350302 |