Mechanisms of Hepatocyte Growth Factor Stimulation of Keratinocyte Metalloproteinase Production

Matrix metalloproteinases participate in normal physiologic processes; however, their overproduction has been associated with connective tissue destruction in a variety of pathological states. Migrating basal keratinocytes transiently express collagenase-1 during normal cutaneous reepithelialization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1996-10, Vol.271 (40), p.24576-24582
Hauptverfasser: Dunsmore, S E, Rubin, J S, Kovacs, S O, Chedid, M, Parks, W C, Welgus, H G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Matrix metalloproteinases participate in normal physiologic processes; however, their overproduction has been associated with connective tissue destruction in a variety of pathological states. Migrating basal keratinocytes transiently express collagenase-1 during normal cutaneous reepithelialization. However, the overexpression of both collagenase-1 and stromelysin-1 has been associated with the pathogenesis of chronic nonhealing ulcers. Aberrant expression of metalloproteinases in inflammation is mediated, at least in part, by soluble factors. Since hepatocyte growth factor/scatter factor (HGF/SF) has been reported to promote keratinocyte migration and proliferation, key events in wound repair, and since HGF/SF is produced by dermal fibroblasts and its c-Met receptor is expressed by basal keratinocytes in wounded skin, we have studied the effects of HGF/SF upon keratinocyte metalloproteinase expression. We have found that HGF/SF can stimulate keratinocyte collagenase-1 and stromelysin-1 production in a dose-dependent and matrix-dependent manner. Expression of 92-kDa gelatinase was not affected by HGF/SF. We determined that HGF/SF regulation of collagenase-1 expression is transcriptionally mediated and requires tyrosine kinase and protein kinase C activaties. HGF/NK1, a naturally occurring, truncated form of HGF/SF, also stimulates collagenase-1 production, but much less efficiently than does the parent molecule. However, HGF/NK2, another HGF/SF splice variant, as well as heparin, potently inhibit HGF/SF-induced collagenase-1 synthesis. These results indicate that HGF/SF and its naturally occurring splice variants have diverse biological effects on keratinocytes and suggest an additional mechanism whereby HGF/SF may regulate keratinocyte function during wound repair.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.271.40.24576