Allosteric Effects of RuvA Protein, ATP, and DNA on RuvB Protein-Mediated ATP Hydrolysis
A detailed characterization of RuvB protein-mediated ATP hydrolysis in the presence of RuvA protein has provided (a) the steady-state kinetic parameters of ATP hydrolysis within a RuvAB complex and (b) several insights into the mechanism of ATP hydrolysis and its coupling to translocation on DNA. In...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 1996-08, Vol.35 (34), p.11228-11238 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A detailed characterization of RuvB protein-mediated ATP hydrolysis in the presence of RuvA protein has provided (a) the steady-state kinetic parameters of ATP hydrolysis within a RuvAB complex and (b) several insights into the mechanism of ATP hydrolysis and its coupling to translocation on DNA. In general, the RuvA protein increases the k cat and decreases the K m for the RuvB ATPase activity. DNA has a much greater effect on the kinetics of ATP hydrolysis when RuvA is present, consistent with a role of RuvA in facilitating the interaction between RuvB and DNA. Mechanistic clues come from deviations from normal steady-state kinetic behavior. A previously described burst of ATP hydrolysis, corresponding to two ATPs per RuvB hexamer [Marrione & Cox (1995) Biochemistry 34, 9809−9818], is still observed in the presence of RuvA protein. This suggests a functional asymmetry in the RuvB hexamer. There is a gradual attenuation of ATP hydrolysis when RuvB protein, alone or in the presence of RuvA protein, hydrolyzes ATP at ATP concentrations below the K m. The attenuation is observed even though an ATP regeneration system is present. ATP hydrolysis simply halts after a limited number of turnovers. The attenuation is reversible, and the effects of RuvA protein, DNA, and additional ATP in reversing the effect provide evidence for a complex array of allosteric interactions operating within the RuvB hexameric helicase. We propose a model in which individual subunits in a RuvB hexamer are functionally paired, with the three pairs moving sequentially and cooperatively through a multistep ATP hydrolytic cycle. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi960316c |