Expression of a developmentally regulated, phosphorylated isoform of microtubule-associated protein 1B in sprouting and regenerating axons in vitro

We have developed a novel culture system for studying axonal regeneration. Short lengths of spinal nerves with their attached dorsal root ganglia were removed from adult mice, explanted into Matrigel and maintained in serum-free medium for up to eight days. Profuse outgrowth of unfasciculated, naked...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 1996-07, Vol.73 (2), p.541-551
Hauptverfasser: Tonge, D.A., Golding, J.P., Gordon-Weeks, P.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have developed a novel culture system for studying axonal regeneration. Short lengths of spinal nerves with their attached dorsal root ganglia were removed from adult mice, explanted into Matrigel and maintained in serum-free medium for up to eight days. Profuse outgrowth of unfasciculated, naked axons occurred within 6 h from the cut ends of the peripheral nerve, dorsal roots and eventually from the ganglion itself, and continued to grow throughout the observation period. Some axons were entirely smooth, whilst others showed prominent varicosities. The former stained with antibody RT97, a marker for large-calibre, myelinated axons, whilst the latter stained with antibodies to calcitonin gene-related peptide, predominantly a marker for unmyelinated and small-diameter myelinated sensory axons. All axons stained with a monoclonal antibody (150) that recognizes a developmentally regulated phosphorylated isoform of the microtubule-associated protein 1B [Gordon-Weeks P. R. et al. (1993) Eur. J. Neurosci. 5, 1302–1311]. Monoclonal antibody 150 staining was observed along the entire length of all axons growing out of the explant; the proximal regions of these axons within the explant itself did not stain. The staining extended to the growth cones, which had elaborate morphologies. Other antibodies (e.g. to growth-associated protein 43) labelled axons within the nerve, as well as those growing in Matrigel. In preparations where the peripheral nerve had been crushed half-way along its length at the time of explantation, monoclonal antibody 150 staining was absent from axons in the nerve proximal to the crush, but present in axons which had regenerated within the nerve distal to the crush. The results indicate that re-expression during axonal regeneration of the phosphorylated isoform of microtubule-associated protein 1B recognized by monoclonal antibody 150 is restricted to the newly formed lengths of regenerated axons. The correlation between its expression and axonal growth during development and regeneration suggests that it may play a role in axonal extension. Our observations also demonstrate the usefulness of these explant cultures for studying axonal regeneration.
ISSN:0306-4522
1873-7544
DOI:10.1016/0306-4522(96)00077-2