Common features of analogous replacement histone H3 genes in animals and plants

Phylogenetic analysis of histone H3 protein sequences demonstrates the independent origin of the replacement histone H3 genes in animals and in plants. Multiple introns in the replacement histone H3 genes of animals in a pattern distinct from that in plant replacement H3 genes supports this conclusi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular evolution 1996-09, Vol.43 (3), p.194-206
Hauptverfasser: Waterborg, J H, Robertson, A J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phylogenetic analysis of histone H3 protein sequences demonstrates the independent origin of the replacement histone H3 genes in animals and in plants. Multiple introns in the replacement histone H3 genes of animals in a pattern distinct from that in plant replacement H3 genes supports this conclusion. It is suggested that replacement H3 genes arose at the same time that, independently, multicellular forms of animals and of plants evolved. Judged by the degree of invariant and functionally constrained amino acid positions, histones H3 and H4, which form together the tetramer kernel of the nucleosome, have co-evolved with equal rates of sequence divergence. Residues 31 and 87 in histone H3 are the only residues that consistently changed across each gene duplication event that created functional replacement histone H3 variant forms. Once changed, these residues have remained invariant across divergent speciation. This suggests that they are required to allow replacement histone H3 to participate in the assembly of nucleosomes in non-S-phase cells. The abundant occurrence of polypyrimidine sequences in the introns of all replacement H3 genes, and the replacement of an intron by a polypyrimidine motif upstream of the alfalfa replacement H3 gene, suggests a function. It is speculated that they may contribute to the characteristic cell-cycle-independent pattern of replacement histone H3 genes by binding nucleosome-excluding proteins.
ISSN:0022-2844
1432-1432
DOI:10.1007/BF02338827