Proteolytic processing of egg-laying hormone-related precursors in Aplysia. Identification of peptide regions critical for biological activity

The atrial gland of the marine mollusk Aplysia californica is an exocrine organ that expresses at least three genes belonging to the egg-laying hormone (ELH) family. In order to study the post-translational processing of the ELH-related gene products in the atrial gland and how it compares to the ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1988-07, Vol.263 (19), p.9223-9237
Hauptverfasser: Nagle, G T, Painter, S D, Blankenship, J E, Kurosky, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The atrial gland of the marine mollusk Aplysia californica is an exocrine organ that expresses at least three genes belonging to the egg-laying hormone (ELH) family. In order to study the post-translational processing of the ELH-related gene products in the atrial gland and how it compares to the bag cells, peptides were isolated from the atrial gland and chemically characterized. The A- and B-related precursors were each cleaved in vivo to yield several major and minor peptides including peptides A and B and the ELH-related peptide complexes that caused egg laying. About 13% of the peptide complexes were further enzymically processed by the atrial gland to yield smaller fragments, which included A-AP.A-ELH-(15-36), A-AP.[Ala27]A-ELH-(15-36), and A-AP.[Gln23,Ala27]A-ELH-(16-36), where A-AP is an acidic peptide encoded by the A- and B-related genes and A-ELH is an ELH-related peptide encoded by the A gene. These processed peptide fragments were not active in an egg-laying bioassay, indicating that retention of the 14-residue NH2-terminal segment of the A-ELH-related sequence, or some portion thereof, was critical for the induction of egg laying. Other characterized peptides included two novel 13-residue NH2-terminal peptides, A-NTP and B-NTP, representing residues 22-34 of the A and B precursors, respectively. These two peptides occurred adjacent to the signal peptide region in each precursor, and their characterization established the site of signal peptide cleavage to be the Ser21-Gln22 peptide bond of each precursor. Intermediate peptide fragments (A-NTP-peptide A and B-NTP-peptide B) were also identified indicating that there was a specific ordering in the cleavage of peptide bonds during posttranslational processing. Finally, a new 55-residue atrial gland peptide was also isolated that was not a part of any ELH-related precursor characterized to date.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)76529-6