Traffic of Dynamin within Individual Drosophila Synaptic Boutons Relative to Compartment-Specific Markers

Presynaptic terminals contain several specialized compartments, which have been described by electron microscopy. We show in an identified Drosophila neuromuscular synapse that several of these compartments-synaptic vesicle clusters, presynaptic plasma membrane, presynaptic cytosol, and axonal cytos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 1996-09, Vol.16 (17), p.5443-5456
Hauptverfasser: Estes, Patricia S, Roos, Jack, van der Bliek, Alexander, Kelly, Regis B, Krishnan, K. S, Ramaswami, Mani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Presynaptic terminals contain several specialized compartments, which have been described by electron microscopy. We show in an identified Drosophila neuromuscular synapse that several of these compartments-synaptic vesicle clusters, presynaptic plasma membrane, presynaptic cytosol, and axonal cytoskeleton-labeled by specific reagents may be resolved from one another by laser scanning confocal microscopy. Using a panel of compartment-specific markers and Drosophila shibire(ts1) mutants to trap an intermediate stage in synaptic vesicle recycling, we have examined the localization and redistribution of dynamin within single synaptic varicosities at the larval neuromuscular junction. Our results suggest that dynamin is not a freely diffusible molecule in resting nerve terminals; rather, it appears localized to synaptic sites by association with yet uncharacterized presynaptic components. In shi(ts1) nerve terminals depleted of synaptic vesicles, dynamin is quantitatively redistributed to the plasma membrane. It is not, however, distributed uniformly over presynaptic plasmalemma; instead, fluorescence images show "hot spots" of dynamin on the plasma membrane of vesicle-depleted nerve terminals. We suggest that these dynamin-rich domains may mark the active zones for synaptic vesicle endocytosis first described at the frog neuromuscular junction.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.16-17-05443.1996