Evidence for involvement of multiple iron species in DNA single-strand scission by H2O2 in HL-60 cells
Some of the properties of cellular iron species which react with H2O2 to cause DNA single-strand breaks in HL-60 cells were characterized in control cells and in cells made deficient of iron using 4,7-phenylsulfonyl-1,10-phenanthroline (bathophenanthroline disulfonic acid or BPS) and ascorbate. Sing...
Gespeichert in:
Veröffentlicht in: | Free radical biology & medicine 1996, Vol.20 (3), p.399-406 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Some of the properties of cellular iron species which react with H2O2 to cause DNA single-strand breaks in HL-60 cells were characterized in control cells and in cells made deficient of iron using 4,7-phenylsulfonyl-1,10-phenanthroline (bathophenanthroline disulfonic acid or BPS) and ascorbate. Single-strand breaks were measured using alkaline elution of DNA of cells treated at 4 degrees to minimize repair during treatment. Strand breakage in the presence of 10% serum was only 40% of that in the absence of serum. This effect was traced to reaction of H2O2 with metals, most likely iron, in serum. Dimethyl sulfoxide (Me2SO) inhibited a maximum of 65% of breaks in control cells. The diffusion distance from the site of generation of hydroxyl radicals to the site of reaction with DNA for the Me2SO-inhibitable fraction was 6.9 nm. There was no significant alteration in the fraction of Me2SO-inhibitable strand breaks or in diffusion distance in iron-deficient cells, though total strand breaks decreased by 70%. When the effect of extracellular iron in serum was taken into account, 60 microM orthophenanthroline (OP) inhibited a maximum of 85% of strand breaks. In cells pretreated with 60 microM OP, the Me2SO-inhibitable fraction of the remaining strand breaks decreased to 32%, while the diffusion distance decreased to 4.1 nm. These data indicate the existence of a number of different iron species, as characterized by overlapping but not coincidental inhibition by OP and Me2SO, and by differing diffusion distances. |
---|---|
ISSN: | 0891-5849 |
DOI: | 10.1016/0891-5849(96)02097-7 |