Corpus callosum morphology in children with Tourette syndrome and attention deficit hyperactivity disorder

The aim of this study was to investigate the morphology of the corpus callosum (CC) in Tourette syndrome (TS) and attention deficit hyperactivity disorder (ADHD) to determine whether these conditions affect distinct regional differences. Seventy-seven children and adolescents, aged 6 to 16 years, co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurology 1996-08, Vol.47 (2), p.477-482
Hauptverfasser: BAUMGARDNER, T. L, SINGER, H. S, DENCKLA, M. B, RUBIN, M. A, ABRAMS, M. T, COLLI, M. J, REISS, A. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to investigate the morphology of the corpus callosum (CC) in Tourette syndrome (TS) and attention deficit hyperactivity disorder (ADHD) to determine whether these conditions affect distinct regional differences. Seventy-seven children and adolescents, aged 6 to 16 years, comprised the four research groups--16 patients with TS, 21 patients with TS plus ADHD, 13 patients with ADHD, and 27 unaffected control subjects. A semiautomated, computer-assisted procedure was used to measure the total area, five subregions, centerline length, perimeter, and bending angle of the CC. MRI data were analyzed using several statistical methods, primarily two-tailed analysis of variance to test the effects of TS and ADHD status, while controlling for the influence of age, gender, and total intracranial area (an estimate of brain size). TS was associated with significant increases in the area of four of five subdivisions, the total area, and the perimeter of the CC. ADHD was associated with a significant decrease in the area of the rostral body. There were no interactions between TS and ADHD factors. These findings suggest that the area of the CC is larger in children with TS, and that this difference is independent of age, handedness, intracranial area, and the diagnosis of ADHD. Our findings support hypotheses that the neurobiologic mechanisms in TS and ADHD involve frontal/subcortical circuits.
ISSN:0028-3878
1526-632X
DOI:10.1212/WNL.47.2.477