Affinity labeling of hemoglobin with 4,4'-diisothiocyanostilbene-2,2'-disulfonate: covalent cross-linking in the 2,3-diphosphoglycerate binding site

The bifunctional reagent 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) reacts with hemoglobin to give various products whose properties are dependent on the ligation state of the protein during the reaction. A major product obtained after reaction of (carbonmonoxy)hemoglobin with DID...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1988-03, Vol.27 (5), p.1804-1808
Hauptverfasser: Kavanaugh, Michael P, Shih, Daniel T. B, Jones, Richard T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The bifunctional reagent 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) reacts with hemoglobin to give various products whose properties are dependent on the ligation state of the protein during the reaction. A major product obtained after reaction of (carbonmonoxy)hemoglobin with DIDS was a high oxygen affinity derivative [P50 = 1.4 mmHg, control P50 = 6 mmHg; 50 mM [bis(2-hydroxyethyl)-amino]tris(hydroxymethyl)methane (Bis-Tris), pH 7.4, 0.1 M Cl-, 25 degrees C] which contained two molecules of DIDS per tetramer resulting from adduct formation at each beta-chain amino terminus. In contrast, a major product of the reaction of deoxyhemoglobin with DIDS consisted of hemoglobin which had incorporated one molecule of DIDS per tetramer and was cross-linked between the beta-chain amino termini. This cross-linked hemoglobin was found to have a greatly decreased O2 affinity (P50 = 28 mmHg). Inhibition of the T to R transition due to the structural constraint produced by cross-linking the beta amino termini is likely to be a major factor in the decreased O2 affinity of this product. The structural and functional properties of this molecule make it a potential candidate for a cell-free blood substitute.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00405a062