Hexanal phenylhydrazone is a mechanism-based inactivator of soybean lipoxygenase 1
Hexanal phenylhydrazone (1; 70:30 E:Z mixture) at micromolar concentration irreversibly inactivates soybean lipoxygenase 1 (L-1) in the presence of dioxygen. L-1 catalyzes the oxidation of 1 into its alpha-azo hydroperoxide 2 [C5H11CH(OOH)N = NC6H5]. 2 is an efficient inactivator of L-1. The aerobic...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 1988-02, Vol.27 (3), p.1058-1066 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hexanal phenylhydrazone (1; 70:30 E:Z mixture) at micromolar concentration irreversibly inactivates soybean lipoxygenase 1 (L-1) in the presence of dioxygen. L-1 catalyzes the oxidation of 1 into its alpha-azo hydroperoxide 2 [C5H11CH(OOH)N = NC6H5]. 2 is an efficient inactivator of L-1. The aerobic reaction between 1 and L-1 follows a branched pathway leading to the release of 2 into the medium or to L-1 inactivation. The respective parameters corresponding to this inactivation by the (E)-1 and (Z)-1 isomers are Ki = 0.25 and 0.40 microM and kinact = 0.8 and 2.1 min-1. Linoleic acid protection agrees with a mechanism-based inactivation process. The oxidation of a minimum of 13 +/- 3 molar equiv of 1 is required for complete L-1 inactivation, but up to 70 equiv is necessary in the presence of a very large excess of 1. The inactivation is actually the result of two pathways: one is due to a reaction of 2 as soon as it is formed at the active site (20%); the other is due to 2 released into the medium and coming back to the active site (80%). The inactivation is accompanied by the oxidation of 1.8 +/- 0.8 methionine residues of the protein into the corresponding sulfoxide. The inactivated L-1 is electron paramagnetic resonance (EPR) silent with an effective magnetic moment of mu = 5.0 +/- 0.1 Bohr magnetons corresponding to an S = 2 spin state. An inactivation mechanism is proposed on the basis of EPR and magnetic susceptibility data obtained from the anaerobic and aerobic reactions of L-1 with 1 and 2. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00403a031 |