Mechanism of Aldehyde Oxidation Catalyzed by Horse Liver Alcohol Dehydrogenase

The mechanism of oxidation of benzaldehyde to benzoic acid catalyzed by horse liver alcohol dehydrogenase (HLADH) has been investigated using the HLADH structure at 2.1 Å resolution with NAD+ and pentafluorobenzyl alcohol in the active site [Ramaswamy et al. (1994) Biochemistry 33, 5230−5237]. Const...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1996-07, Vol.35 (30), p.9782-9791
Hauptverfasser: Olson, Leif P, Luo, Jia, Almarsson, Örn, Bruice, Thomas C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mechanism of oxidation of benzaldehyde to benzoic acid catalyzed by horse liver alcohol dehydrogenase (HLADH) has been investigated using the HLADH structure at 2.1 Å resolution with NAD+ and pentafluorobenzyl alcohol in the active site [Ramaswamy et al. (1994) Biochemistry 33, 5230−5237]. Constructs for molecular dynamics (MD) investigations with HLADH were obtained by a best-fit superimposition of benzaldehyde or its hydrate on the pentafluorobenzyl alcohol bound to the active site Zn(II) ion. Equilibrium bond lengths, angles, and dihedral parameters for Zn(II) bonding residues His67, Cys46, and Cys174 were obtained from small-molecule X-ray crystal structures and an ab initio-derived parameterization of zinc in HLADH [Ryde, U. (1995) Proteins:  Struct., Funct., Genet. 21, 40−56]. Dynamic simulations in CHARMM were carried out on the following three constructs to 100 ps:  (MD1) enzyme with NAD+, benzaldehyde, and zinc-ligated HO- in the active site; (MD2) enzyme with NAD+ and hydrated benzaldehyde monoanion bound to zinc via the pro-R oxygen, with a proton residing on the pro-S oxygen; and (MD3) enzyme with NAD+ and hydrated benzaldehyde monoanion bound to zinc via the pro-S oxygen, with a proton residing on the pro-R oxygen. Analyses were done of 800 sample conformations taken in the last 40 ps of dynamics. Structures from MD1 and MD3 were used to define the initial spatial arrangements of reactive functionalities for semiempirical PM3 calculations. Using PM3, model systems were calculated of ground states and some transition states for aldehyde hydration, hydride transfer, and subsequent proton shuttling. With benzaldehyde and zinc-bound hydroxide ion in the active site, the oxygen of Zn(II)−OH resided at a distance of 2.8−5.5 Å from the aldehyde carbonyl carbon during the dynamics simulation. This may be compared to the PM3 transition state for attack of the Zn(II)−OH oxygen on the benzaldehyde carbonyl carbon, which has an O···C distance of 1.877 Å. HLADH catalysis of the aldehyde hydration would require very little motion aside from that in the ground state. Two simulations of benzaldehyde hydrate ligated to zinc (MD2 and MD3) both showed close approach of the aldehyde hydrate hydrogen to NAD+ C4, varying from 2.3 to 3.3 Å, seemingly favorable for the hydride transfer reaction. The MD2 configuration does not allow proton shuttling. On the other hand, when the pro-S oxygen is ligated to zinc (MD3), the proton on the pro-R oxygen averages 2.09 Å f
ISSN:0006-2960
1520-4995
DOI:10.1021/bi952020x