Nuclear magnetic resonance relaxation in experimental brain edema: Effects of water concentration, protein concentration, and temperature

Proton relaxation times T1 and T2 of macromolecular solutions, bovine brain tissues, and experimental cat brain edema tissues were studied as a function of water concentration, protein concentration, and temperature. A linear relation was found between the inverse of the weight fraction of tissue wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 1988-03, Vol.6 (3), p.265-274
Hauptverfasser: Kamman, R. L., Go, K. G., Brouwer, W., Berendsen, H. J. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Proton relaxation times T1 and T2 of macromolecular solutions, bovine brain tissues, and experimental cat brain edema tissues were studied as a function of water concentration, protein concentration, and temperature. A linear relation was found between the inverse of the weight fraction of tissue water and the spin‐lattice relaxation rate, R1, based on a fast proton exchange model for relaxation. This correlation was also found for the spin‐spin relaxation rate, R2, of gray matter samples and macromolecular solutions at low concentrations. Concentrated solutions of protein‐water samples showed an enhanced relaxation due to viscosity effects. The T2 of white matter was considerably lengthened with elevated water concentration, but showed no straightforward relation with the total tissue water content. The relaxation times of all samples increased with temperature, supporting the assumption of fast proton exchange in the model for relaxation. This was not found for white matter, in which T2 decreased with increasing temperature, which indicated that intermediate or even slow exchange was present. The relation found between relaxation times and tissue water content can be used to predict the amount of and/or increase in tissue water due to water‐elevating processes such as edema. © 1988 Academic Press, Inc.
ISSN:0740-3194
1522-2594
DOI:10.1002/mrm.1910060304