Tau as a nucleolar protein in human nonneural cells in vitro and in vivo

The Tau-1 monoclonal antibody was localized to the nucleolus of interphase cells and the nucleolar organizing regions (NORs) of acrocentric chromosomes in cultured human cells. Putative nucleolar and NOR tau was found in HeLa cells and lymphoblasts as well as in nontransformed fibroblasts and lympho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chromosoma 1996-07, Vol.105 (1), p.20-30
Hauptverfasser: Thurston, V C, Zinkowski, R P, Binder, L I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Tau-1 monoclonal antibody was localized to the nucleolus of interphase cells and the nucleolar organizing regions (NORs) of acrocentric chromosomes in cultured human cells. Putative nucleolar and NOR tau was found in HeLa cells and lymphoblasts as well as in nontransformed fibroblasts and lymphocytes. To confirm the presence of tau in the nuclei of these nonneural cells, immunoblotting analysis was performed on isolated nuclei from lymphoblasts. Several tau bands were noted on the blot of the nuclear extract suggesting the presence of multiple tau isoforms. Tau-1 immunostaining demonstrated variable staining intensities between individual acrocentric chromosomes in all cells tested. In cultured peripheral lymphocytes, these staining patterns were the same from one chromosome spread to the next within an individual. This consistency of Tau-1 staining and its variability among NORs was reminiscent of staining patterns obtained using the silver-NOR procedure. Comparisons of Tau-1 immunostaining with silver staining of chromosome spreads from human lymphocytes demonstrated that Tau-1 did not immunostain all of the NORs that were silver stained. The intensity of Tau-1 fluorescence in nucleoli was further shown to be increased in phytohemagglutinin-stimulated lymphocytes, indicating an upregulation of nuclear tau when cells reentered the cell cycle. These results contribute to a growing body of evidence defining tau as a multifunctional protein that may be involved in ribosomal biogenesis and/or rRNA transcription in the nucleus of all cells as well as microtubule-stabilizing functions in the neuronal cytoplasm.
ISSN:0009-5915
1432-0886
DOI:10.1007/bf02510035