Substrate-related potent inhibitors of brain metalloendopeptidase
Rat brain metalloendopeptidase (EC 3.4.24.15) generates Leu- and Met-enkephalin from several larger opioid peptides and is capable of degrading a number of neuropeptides. Substrate-related N-(1-carboxy-3-phenylpropyl) peptide derivatives were synthesized and tested for enzyme inhibition. The best of...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 1988-01, Vol.27 (2), p.597-602 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rat brain metalloendopeptidase (EC 3.4.24.15) generates Leu- and Met-enkephalin from several larger opioid peptides and is capable of degrading a number of neuropeptides. Substrate-related N-(1-carboxy-3-phenylpropyl) peptide derivatives were synthesized and tested for enzyme inhibition. The best of these derivatives, N-[1(RS)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate, inhibited the enzyme in a competitive manner with a Ki of 16 nM. The data indicate that the carboxyl group of the N-(1-carboxy-3-phenylpropyl) moiety coordinates with the active site zinc atom and that the remaining part of the inhibitor is necessary for interaction with the substrate recognition site of the enzyme. Replacement of the 1-carboxy-3-phenylpropyl group by a carboxymethyl group decreased the inhibitory potency by more than 3 orders of magnitude, emphasizing the importance of the hydrophobic phenyl group for inhibitor binding to a hydrophobic pocket at the S1 subsite. Replacement of the Tyr residue by an Ala residue decreased the inhibitory potency by more than 20-fold. Changes in the structure of the residue interacting with the S1' subsite could cause a more than 60-fold change in inhibition. The inhibitors were either ineffective or only weakly inhibitory against membrane-bound metalloendopeptidase ("enkephalinase", EC 3.4.24.11), an enzyme highly active in rabbit kidney but also present in brain. The data indicate the presence of an extended binding site in the enzyme with residues interacting with S1, S1', and S3' subsites largely determining inhibitor binding. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00402a015 |