Fast proton spectroscopic imaging employing k-space weighting achieved by variable repetition times

A k‐space weighted spectroscopic imaging (SI) method is presented that allows a reduction in the total data acquisition time by up to 55% compared with standard SI. The k‐space weighting is achieved by varying the repetition time, thus realizing an inherent apodization that corresponds to a circular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 1996-04, Vol.35 (4), p.457-464
Hauptverfasser: Kühn, Bernd, Dreher, Wolfgang, Norris, David G., Leibfritz, Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A k‐space weighted spectroscopic imaging (SI) method is presented that allows a reduction in the total data acquisition time by up to 55% compared with standard SI. The k‐space weighting is achieved by varying the repetition time, thus realizing an inherent apodization that corresponds to a circularly symmetric generalized Hamming filter. The flip angle is varied with the repetition time to enhance the signal‐to‐noise ratio. These techniques were employed using a short echo time of 10 ms. In vivo measurements on healthy rat brain at 4.7 T were conducted, obtaining two‐dimensional spectroscopic imaging data from a 25 × 25 circularly reduced k‐space area in as little as 5 min. The signal‐to‐noise ratio is sufficiently high to detect J‐coupled resonances such as myo‐inositol or glutamate/glutamine, demonstrating the ability to combine short acquisition times with comprehensive metabolic information. The T1 dependency of the apodization and the corresponding point spread function was evaluated by computer simulations. The achievable signal‐to‐noise ratio per unit time was compared with standard SI giving a parameter‐dependent advantage of approximately 20% of the standard SI method.
ISSN:0740-3194
1522-2594
DOI:10.1002/mrm.1910350403