Specificity of DNA uptake during whole cell transformation of S. cerevisiae
We have studied the mechanism of DNA transformation of whole yeast cells in Saccharomyces cerevisiae with particular emphasis on the role of the cell wall complex in DNA uptake. Two new aspects of the process have been investigated in order to evaluated its specificity. Such aspects are: (i) effect...
Gespeichert in:
Veröffentlicht in: | Yeast (Chichester, England) England), 1987-06, Vol.3 (2), p.131-137 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have studied the mechanism of DNA transformation of whole yeast cells in Saccharomyces cerevisiae with particular emphasis on the role of the cell wall complex in DNA uptake. Two new aspects of the process have been investigated in order to evaluated its specificity. Such aspects are: (i) effect of monovalent vs. divalent cations during incubation with the transforming DNA and (ii) timing of DNA adsorption and uptake. We found that the specificity for cation requirement is a strain‐dependent characteristic influenced by the presence of transforming DNA in the cell suspension. This finding is supported by reports from several laboratories that some yeast strains show mutually exclusive transformability with monovalent vs. divalent cations. While irreversible adsorption of plasmid DNA molecules is induced by both heat shock and polyethylene‐glycol(PEG), DNA uptake seems to occur only after the removal of PEG. In the course of this study we have developed a new, alternative method of whole cell DNA transformation with CaCl2 able to transform strains that do not respond to other methods. |
---|---|
ISSN: | 0749-503X 1097-0061 |
DOI: | 10.1002/yea.320030209 |