Site-specific derivatives of wheat germ calmodulin. Interactions with troponin and sarcoplasmic reticulum

Wheat germ calmodulin (CaM) was derivatized at its single cysteine (Cys27) with either the fluorescent reagent, N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonic acid (I-EDANS) or the photoactivable cross-linker benzophenone-4-maleimide. Comparison of the native and derivatized wheat germ CaMs wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1988-01, Vol.263 (1), p.542-548
Hauptverfasser: Strasburg, G M, Hogan, M, Birmachu, W, Thomas, D D, Louis, C F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wheat germ calmodulin (CaM) was derivatized at its single cysteine (Cys27) with either the fluorescent reagent, N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonic acid (I-EDANS) or the photoactivable cross-linker benzophenone-4-maleimide. Comparison of the native and derivatized wheat germ CaMs with native bovine testis CaM indicates that the concentrations of these proteins required for half-maximal stimulation of either erythrocyte membrane Ca2+-ATPase activity or cardiac sarcoplasmic reticulum phosphorylation are very similar. Affinity labeling of troponin subunits with 125I- and benzophenone-4-maleimide-labeled CaM demonstrates CaM binding to troponin I (TnI) and troponin T (TnT) in binary complexes, as well as to both subunits in the CaM.TnI.TnT ternary complex. This suggests that both subunits are within 10 A of Cys27 of calmodulin. Affinity labeling of cardiac sarcoplasmic reticulum vesicles with 125I- and benzophenone-4-maleimide-labeled CaM exhibits a Ca2+- and Mg2+-dependent labeling of phospholamban, as shown previously with bovine calmodulin (Louis, C.F., and Jarvis, B. (1982) J. Biol. Chem. 257, 15187-15191). Thus, it appears that Ca2+-binding site I of calmodulin is at or near binding sites of calmodulin for TnI, TnT, and phospholamban. Analysis of the time-resolved fluorescence decay curves of I-EDANS-labeled calmodulin indicates a major component with a lifetime of 11.9 ns (+Ca2+), which accounts for 81% of the total fluorescence. The lifetime decreases slightly to 11.3 ns in the absence of Ca2+. Fluorescence anisotropy experiments indicate that I-EDANS-labeled CaM binds TnI with Kd = 6 x 10(-8) M in the presence of Ca2+. This study suggests that these single-site derivatives will be useful for characterizing a variety of calmodulin-receptor interactions because they lack ambiguities inherent in less specific labeling methods.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)57426-9