Mutual antagonism of kappa-opiate and alpha 2-adrenoceptor agonist effects on intrasynaptosomal free [Ca2+]i
Synaptosomes prepared from rat cerebral cortices on Percoll discontinuous density gradients were loaded with the fluorescent EGTA analogue Quin 2 to allow measurement of intracellular free [Ca2+]i. When either kappa-opiate or alpha 2-adrenoceptor agonists were incubated with the synaptosomes, there...
Gespeichert in:
Veröffentlicht in: | Journal of neurochemistry 1988-01, Vol.50 (1), p.65-68 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Synaptosomes prepared from rat cerebral cortices on Percoll discontinuous density gradients were loaded with the fluorescent EGTA analogue Quin 2 to allow measurement of intracellular free [Ca2+]i. When either kappa-opiate or alpha 2-adrenoceptor agonists were incubated with the synaptosomes, there was a highly significant (p less than 0.004, p less than 2.7 X 10(-6), respectively) reduction in intrasynaptosomal free [Ca2+]i relative to controls. As these synaptosomes are not depolarised, the data suggest that both alpha 2-adrenoceptor agonists and kappa-opiate agonists inhibit neurotransmitter release, decreasing the availability of intraneuronal [Ca2+]i rather than altering Ca2+ entry. However, when these two agonists were coincubated, there was a complete abolition of the effects of either agonist; in fact, there was an apparent increase in the intrasynaptosomal free [Ca2+]i. Neither morphine nor [D-Ala2-D-Leu5]enkephalin, mu and delta opiate agonists respectively, had any significant effect on intrasynaptosomal free [Ca2+]i. These results show that the individual effects of clonidine and dynorphin A1-13 are in keeping with the role of these substances at autoreceptors controlling neurotransmitter release. The mutual antagonism of their effects on [Ca2+]i is more difficult to explain but it may be a mechanism that prevents the occurrence of excessive inhibition of neuronal systems. |
---|---|
ISSN: | 0022-3042 1471-4159 |
DOI: | 10.1111/j.1471-4159.1988.tb13230.x |