Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: Analysis of the enzymatic domains in the modular polyketide synthase

The three giant multifunctional polypeptides of the rapamycin (Rp)-producing polyketide synthase (RAPS1, RAPS2 and RAPS3) have recently been shown to contain 14 separate sets, or modules, of enzyme activities, each module catalysing a specific round of polyketide chain extension. Detailed sequence c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene 1996-02, Vol.169 (1), p.9-16
Hauptverfasser: Aparicio, Jesús F., Molnár, István, Schwecke, Torsten, König, Ariane, Haydock, Stephen F., Ee Khaw, Lake, Staunton, James, Leadlay, Peter F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The three giant multifunctional polypeptides of the rapamycin (Rp)-producing polyketide synthase (RAPS1, RAPS2 and RAPS3) have recently been shown to contain 14 separate sets, or modules, of enzyme activities, each module catalysing a specific round of polyketide chain extension. Detailed sequence comparison between these protein modules has allowed further characterisation of aa that may be important in catalysis or specificity. The acyl-carrier protein (ACP), β-ketoacyl-ACP synthase (KS) and acyltransferase (AT) domains (the core domains) have an extremely high degree of mutual sequence homology. The KS domains in particular are almost perfect repeats over their entire length. Module 14 shows the least homology and is unique in possessing only core domains. The enoyl reductase (ER), β-ketoacyl-ACP reductase (KR) and dehydratase (DH) domains are present even in certain modules where they are not apparently required. Four DH domains can be recognised as inactive by characteristic deletions in active site sequences, but for two others, and for KR and ER in module 3, the sequence is not distinguishable from that of active counterparts in other modules. The N terminus of RAPS1 contains a novel coenzyme A ligase (CL) domain that activates and attaches the shikimate-derived starter unit, and an ER activity that may modify the starter unit after attachment. The sequence comparison has revealed the surprisingly high sequence similarity between inter-domain ‘linker’ regions, and also a potential amphipathic helix at the N terminus of each multienzyme subunit which may promote dimerisation into active species
ISSN:0378-1119
1879-0038
DOI:10.1016/0378-1119(95)00800-4