Effective regurgitant orifice area by the color Doppler flow convergence method for evaluating the severity of chronic aortic regurgitation : an animal study
The aim of the present study was to evaluate dynamic changes in aortic regurgitant (AR) orifice area with the use of calibrated electromagnetic (EM) flowmeters and to validate a color Doppler flow convergence (FC) method for evaluating effective AR orifice area and regurgitant volume. In 6 sheep, 8...
Gespeichert in:
Veröffentlicht in: | Circulation (New York, N.Y.) N.Y.), 1996-02, Vol.93 (3), p.594-602 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of the present study was to evaluate dynamic changes in aortic regurgitant (AR) orifice area with the use of calibrated electromagnetic (EM) flowmeters and to validate a color Doppler flow convergence (FC) method for evaluating effective AR orifice area and regurgitant volume.
In 6 sheep, 8 to 20 weeks after surgically induced AR, 22 hemodynamically different states were studied. Instantaneous regurgitant flow rates were obtained by aortic and pulmonary EM flowmeters balanced against each other. Instantaneous AR orifice areas were determined by dividing these actual AR flow rates by the corresponding continuous wave velocities (over 25 to 40 points during each diastole) matched for each steady state. Echo studies were performed to obtain maximal aliasing distances of the FC in a low range (0.20 to 0.32 m/s) and a high range (0.70 to 0.89 m/s) of aliasing velocities; the corresponding maximal AR flow rates were calculated using the hemispheric flow convergence assumption for the FC isovelocity surface. AR orifice areas were derived by dividing the maximal flow rates by the maximal continuous wave Doppler velocities. AR orifice sizes obtained with the use of EM flowmeters showed little change during diastole. Maximal and time-averaged AR orifice areas during diastole obtained by EM flowmeters ranged from 0.06 to 0.44 cm2 (mean, 0.24 +/- 0.11 cm2) and from 0.05 to 0.43 cm2 (mean, 0.21 +/- 0.06 cm2), respectively. Maximal AR orifice areas by FC using low aliasing velocities overestimated reference EM orifice areas; however, at high AV, FC predicted the reference areas more reliably (0.25 +/- 0.16 cm2, r = .82, difference = 0.04 +/- 0.07 cm2). The product of the maximal orifice area obtained by the FC method using high AV and the velocity time integral of the regurgitant orifice velocity showed good agreement with regurgitant volumes per beat (r = .81, difference = 0.9 +/- 7.9 mL/beat).
This study, using strictly quantified AR volume, demonstrated little change in AR orifice size during diastole. When high aliasing velocities are chosen, the FC method can be useful for determining effective AR orifice size and regurgitant volume. |
---|---|
ISSN: | 0009-7322 1524-4539 |
DOI: | 10.1161/01.CIR.93.3.594 |