Steady-State Kinetics of the Reduction of Coenzyme Q Analogs by Complex I (NADH:Ubiquinone Oxidoreductase) in Bovine Heart Mitochondria and Submitochondrial Particles

The reduction kinetics of coenzyme Q (CoQ, ubiquinone) by NADH:ubiquinone oxidoreductase (complex I, EC 1.6.99.3) was investigated in bovine heart mitochondrial membranes using water-soluble homologs and analogs of the endogenous ubiquinone acceptor CoQ10 [the lower homologs from CoQ0 to CoQ3, the 6...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1996-02, Vol.35 (8), p.2705-2716
Hauptverfasser: Fato, Romana, Estornell, Ernesto, Di Bernardo, Salvatore, Pallotti, Francesco, Parenti Castelli, Giovanna, Lenaz, Giorgio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reduction kinetics of coenzyme Q (CoQ, ubiquinone) by NADH:ubiquinone oxidoreductase (complex I, EC 1.6.99.3) was investigated in bovine heart mitochondrial membranes using water-soluble homologs and analogs of the endogenous ubiquinone acceptor CoQ10 [the lower homologs from CoQ0 to CoQ3, the 6-pentyl (PB) and 6-decyl (DB) analogs, and duroquinone]. By far the best substrates in bovine heart submitochondrial particles are CoQ1 and PB. The kinetics of NADH−CoQ reductase was investigated in detail using CoQ1 and PB as acceptors. The kinetic pattern follows a ping-pong mechanism; the K m for CoQ1 is in the range of 20 μM but is reversibly increased to 60 μM by extraction of the endogenous CoQ10. The increased K m in CoQ10-depleted membranes indicates that endogenous ubiquinone not only does not exert significant product inhibition but rather is required for the appropriate structure of the acceptor site. The much lower V max with CoQ2 but not with DB as acceptor, associated with an almost identical K m, suggests that the sites for endogenous ubiquinone bind 6-isoprenyl- and 6-alkylubiquinones with similar affinity, but the mode of electron transfer is less efficient with CoQ2. The k min (k cat/K m) for CoQ1 is 4 orders of magnitude lower than the bimolecular collisional constant calculated from fluorescence quenching of membrane probes; moreover, the activation energy calculated from Arrhenius plots of k min is much higher than that of the collisional quenching constants. These observations strongly suggest that the interaction of the exogenous quinones with the enzyme is not diffusion-controlled. Contrary to other systems, in bovine submitochondrial particles, CoQ1 usually appears to be able to support a rate approaching that of endogenous CoQ10, as shown by application of the “pool equation” [Kröger, A., & Klingenberg, M. (1973) Eur. J. Biochem. 39, 313−323] relating the rate of ubiquinone reduction to the rate of ubiquinol oxidation and the overall rate through the ubiquinone pool.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi9516034