Comparison of End-Tidal PCO2 and Average Alveolar Expired PCO2 During Positive End-Expiratory Pressure

The measurement of average alveolar expired PCO2 (PAECO2) weights each PCO2 value on the alveolar plateau of the CO2 expirogram by the simultaneous change in exhaled volume.PAECO2 can be determined from a modified analysis of the Fowler anatomic dead space (VDANAT). In contrast, end-tidal PCO2 (PETC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anesthesia and analgesia 1996-02, Vol.82 (2), p.368-373
Hauptverfasser: Breen, Peter H., Mazumdar, Bhaskar, Skinner, Sean C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The measurement of average alveolar expired PCO2 (PAECO2) weights each PCO2 value on the alveolar plateau of the CO2 expirogram by the simultaneous change in exhaled volume.PAECO2 can be determined from a modified analysis of the Fowler anatomic dead space (VDANAT). In contrast, end-tidal PCO2 (PETCO2) only measures PCO2 in the last small volume of exhalate. In conditions such as mechanical ventilation with positive end-expiratory pressure (PEEP), where the alveolar plateau can have a significant positive slope, we questioned how much PETCO2 could overestimate PAECO2. Accordingly, in six anesthetized ventilated dogs, we digitally measured and processed tidal PCO2 and flow to determine VD (ANAT). We determined PETCO2 and PAECO before and after the application of 7.6 cm H2 O PEEP. Alveolar dead space to tidal volume fraction (VD/VT) was determined by [arterial PCO2-alveolar PCO2]/arterial PCO2, where alveolar PCO (2) was determined by either PETCO2 or PAECO2. During baseline ventilation, PETCO2 was 3.4 mm Hg (approximately 11%) greater than PAECO2. Because PEEP significantly increased the slope of the alveolar plateau from 28 to 74 mm Hg/L, the difference between PETCO2 and PAECO2 significantly increased to 6.6 mm Hg (approximately 20% difference. The concurrent increase in VDANAT during PEEP decreased alveolar tidal volume and tended to limit the overestimation of PETCO (2) compared to PAECO2. When alveolar PCO2 was estimated by PETCO2, alveolar VD/VT was 18%, compared to an alveolar VD/VT of 26% when alveolar PCO (2) was estimated by PAECO2. This difference was significantly magnified during PEEP ventilation. The overestimation of PAECO2 by PETCO2 can result in a falsely high assessment of overall alveolar PCO2. Moreover, the use of PETCO (2) to estimate alveolar PCO2 in the determination of the alveolar dead space fraction can result in falsely low and even negative values of alveolar dead space.(Anesth Analg 1996;82:368-73)
ISSN:0003-2999
1526-7598
DOI:10.1097/00000539-199602000-00027