Linkage disequilibrium and extended haplotypes in the HLA-A to D6S105 region : implications for mapping the hemochromatosis gene (HFE)

The hemochromatosis gene (HFE) maps to 6p21.3, in close linkage with the HLA Class I genes. Linkage disequilibrium (LD) studies were designed to narrow down the most likely candidate region for HFE, as an alternative to traditional linkage analysis. However, both the HLA-A and D6S105 subregions, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human genetics 1996, Vol.97 (1), p.103-113
Hauptverfasser: GANDON, G, JOUANOLLE, A. M, CHAUVEL, B, MAUVIEUX, V, LE TREUT, A, FEINGOLD, J, LE GALL, J. Y, DAVID, V, YAOUANQ, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hemochromatosis gene (HFE) maps to 6p21.3, in close linkage with the HLA Class I genes. Linkage disequilibrium (LD) studies were designed to narrow down the most likely candidate region for HFE, as an alternative to traditional linkage analysis. However, both the HLA-A and D6S105 subregions, which are situated 2-3 cM and approximately 3 Mb apart, have been suggested to contain HFE. The present report extends our previous study based upon the analysis of a large number of HFE and normal chromosomes from 66 families of Breton ancestry. In addition to the previously used RFLP markers spanning the 400-kb surrounding HLA-A, we examined three microsatellites: D6S510, HLA-F, and D6S105. Our combined data not only confirm a peak of LD at D6S105, but also reveal a complex pattern of LD over the i82 to D6S105 interval. Within our ethnically well-defined population of Brittany, the association of HFE with D6S105 is as great as that with HLA-A, while the internal markers display a lower LD. Fine haplotype analysis enabled us to identify two categories of haplotypes segregating with HFE. In contrast to the vast majority of normal haplotypes, 50% of HFE haplotypes are completely conserved over the HLA-A to D6S105 interval. These haplotypes could have been conserved through recombination suppression, selective forces and/or other evolutionary factors. This particular haplotypic configuration might account for the apparent inconsistencies between genetic linkage and LD data, and additionally greatly complicates positional cloning of HFE through disequilibrium mapping.
ISSN:0340-6717
1432-1203
DOI:10.1007/BF00218843