Positioning of the tibial tunnel for anterior cruciate ligament reconstruction
Two mechanisms of unintentioanl anterior tibial tunnel axis shift can occur despite accurate placement of the guide wire within the proximal tibia. The first results from using a short-block reamer head joined to a shaft of smaller diameter. If the tibial tunnel is drilled obliquely, it is possible...
Gespeichert in:
Veröffentlicht in: | Arthroscopy 1995-12, Vol.11 (6), p.688-695 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two mechanisms of unintentioanl anterior tibial tunnel axis shift can occur despite accurate placement of the guide wire within the proximal tibia. The first results from using a short-block reamer head joined to a shaft of smaller diameter. If the tibial tunnel is drilled obliquely, it is possible for the reamer head to displace anteriorly in the knee joint before completion of the posterior portion of the tibial tunnel. The second mechanism of anterior shift involves using two sequential drills to create the tibial tunnel. To delineate the causes of this unwanted shift, cadaveric studies and special roentgenographic studies were undertaken. Results demonstrated that the shift is related directly to the presence of high-density bone in the tibial plateau. In an effort to minimize this effect, various drill designs were tested, and it was determined that a drill-head length of 25 mm was most effective at reducing the shift without sacrificing the freedom of movement necessary to obtain precise endosteal placement of the femoral tunnel. Along with these experimental studies, a retrospective 7-year review of anterior cruciate ligament (ACL) reconstruction failures was performed to assess the clinical significance of inadvertent anterior positioning of the tibial tunnel. |
---|---|
ISSN: | 0749-8063 1526-3231 |
DOI: | 10.1016/0749-8063(95)90111-6 |