An HLA class I peptide-binding assay based on competition for binding to class I molecules on intact human B cells. Identification of conserved HIV-1 polymerase peptides binding to HLA-A0301
A peptide-binding assay employing the HLA class I molecules on intact human B cells is described. The peptide antigens are stripped from the HLA class I molecules by mild acid treatment, after which the cells are incubated with a FL-labeled reference peptide together with different concentrations of...
Gespeichert in:
Veröffentlicht in: | Human immunology 1995-12, Vol.44 (4), p.189-198 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A peptide-binding assay employing the HLA class I molecules on intact human B cells is described. The peptide antigens are stripped from the HLA class I molecules by mild acid treatment, after which the cells are incubated with a FL-labeled reference peptide together with different concentrations of the peptide of interest. The effectiveness by which the latter peptide competes for binding to the HLA class I molecules is assayed by measuring the amount of HLA-bound FL-labeled reference peptide with FACscan analysis. The assay is easy to perform because there is no need to purify HLA class I molecules, or to transfect cells with HLA class I molecules, and no radioactive label is used. Moreover, large panels of HLA-typed human B-cell lines are available as tools for peptide binding to a vast array of HLA molecules. The binding assay was optimized and validated with peptides of known binding capacity to either HLA-A*0201 or HLA-A*0301. The kinetics of peptide binding in this assay were shown to be comparable to that in assays employing soluble HLA class I molecules. Application of the assay in the search for potential HLA-A*0301 restricted CTL epitopes, derived from HIV-1 polymerase, resulted in the identification of five high-affinity binding peptides. |
---|---|
ISSN: | 0198-8859 |
DOI: | 10.1016/0198-8859(95)00105-0 |