Mechanically stretched chromosomes as targets for high-resolution FISH mapping

When used with metaphase chromosomes, fluorescence in situ hybridization (FISH) makes it possible to localize probes to individual chromosome bands and to establish the order of probes separated by > or = 2-3 Mb in dual-color hybridizations. We evaluated the use of mechanically stretched chromoso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome research 1995-08, Vol.5 (1), p.13-20
Hauptverfasser: Laan, M, Kallioniemi, O P, Hellsten, E, Alitalo, K, Peltonen, L, Palotie, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When used with metaphase chromosomes, fluorescence in situ hybridization (FISH) makes it possible to localize probes to individual chromosome bands and to establish the order of probes separated by > or = 2-3 Mb in dual-color hybridizations. We evaluated the use of mechanically stretched chromosomes as hybridization targets for increased mapping resolution. Mapping resolution was tested by pair-wise hybridizations with probes from the 1p32-p33 region, spanning distances from 20 to approximately 1500 kb. Probes separated by > or = 170 kb could be ordered relative to one another and to the centromere-telomere axis of the chromosome. The advantages of the technique are the simple procedure for preparing the slides, the straightforward interpretation of the results, and the ability to score the predominant order from < 10 stretched chromosomes. However, because of the variability of stretching from one sample to another, the calculation of actual physical distances between probes is not possible. To illustrate the utility of this method, we showed that the gene for receptor tyrosine kinase TIE lies centromeric to COL9A2, RLF, and L-MYC genes at 1p32. The use of mechanically stretched chromosomes provides < or = 10-fold increased mapping resolution as compared with conventional metaphase FISH. Thus, the technique effectively bridges the gap between metaphase mapping and ultra-high-resolution mapping (1-300 kb) techniques, such as the DNA fiber FISH.
ISSN:1088-9051
DOI:10.1101/gr.5.1.13