Methylxanthines with adenosine alter TNFα-primed PMN activation
Methylxanthines are best known as phosphodiesterase inhibitors that cause a rise in intracellular cAMP. One would expect the two methylxanthines, caffeine and pentoxifylline, to have similar actions on neutrophils (PMN). However, caffeine stimulated and pentoxifylline inhibited PMN oxidative activit...
Gespeichert in:
Veröffentlicht in: | Immunopharmacology 1995-11, Vol.31 (1), p.19-29 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Methylxanthines are best known as phosphodiesterase inhibitors that cause a rise in intracellular cAMP. One would expect the two methylxanthines, caffeine and pentoxifylline, to have similar actions on neutrophils (PMN). However, caffeine stimulated and pentoxifylline inhibited PMN oxidative activity. Micromolar concentrations of pentoxifylline decreased native and recombinant tumor necrosis factor-α (TNFα)-primed formyl met-leu-phe (fMLP)-stimulated PMN chemiluminescence, superoxide production and myeloperoxidase (MPO) release. In contrast, equal concentrations of caffeine increased chemiluminescence and MPO release with no effect on superoxide production. These activities of the methylxanthines were only observed in the presence of physiological concentrations of adenosine, and were abolished by the treatment of the PMN with adenosine deaminase. The activities of adenosine, pentoxifylline and caffeine on PMN activity could not be readily explained by changes in PMN [cAMP]. Thus for TNFα-primed PMN, pentoxifylline decreases PMN activity by enhancing the effect of adenosine on degranulation and superoxide production; whereas caffeine increases PMN activity by counteracting the effect of adenosine on degranulation. |
---|---|
ISSN: | 0162-3109 |
DOI: | 10.1016/0162-3109(95)00030-0 |