Inhibition of Ca2+ channel currents in human neuroblastoma (SH-SY5Y) cells by neuropeptide Y and a novel cyclic neuropeptide Y analogue
Whole-cell Ca2+ channel currents were recorded in human neuroblastoma (SH-SY5Y) cells, using conventional and perforated-patch techniques. Neuropeptide Y (NPY, 10-1000 nM) caused concentration-dependent inhibition of Ca2+ channel current amplitudes which was pertussis toxin-sensitive, voltage-depend...
Gespeichert in:
Veröffentlicht in: | Neuropharmacology 1995-11, Vol.34 (11), p.1507-1514 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Whole-cell Ca2+ channel currents were recorded in human neuroblastoma (SH-SY5Y) cells, using conventional and perforated-patch techniques. Neuropeptide Y (NPY, 10-1000 nM) caused concentration-dependent inhibition of Ca2+ channel current amplitudes which was pertussis toxin-sensitive, voltage-dependent and associated with slowing of channel activation kinetics, regardless of which recording configuration was used. Inhibition was observed in all cells tested. Similar current inhibitions were observed with NPY (18-36) and peptide YY, but not with [Leu31, Pro34]NPY, indicating that the effects were mediated by Y2 receptors. Pancreatic polypeptide (100 nM) was without effect on Ca2+ channel currents. The effects of NPY were additive with nifedipine (at a supramaximal concentration of 5 microM), suggesting that NPY predominantly inhibits N-type Ca2+ channels present in these cells, and not L-type. The effects of NPY were mimicked by a novel, cyclic analogue of NPY which is 40-fold more selective for Y2 receptors than other commonly used Y2-selective peptides. The cyclic analogue was also more potent than NPY itself, causing maximal current inhibition at approx 300 nM, whereas the response to NPY was not fully saturated at 1 microM. Our results indicate that SH-SY5Y cells represent an excellent model system for studying the coupling of Y2 receptors to N-type channel inhibition. Furthermore, in the absence of selective antagonists for NPY receptor subtypes, the highly selective Y2 agonist cyclic NPY derivative may prove a useful tool for probing the various roles of Y2 receptors in the nervous system. |
---|---|
ISSN: | 0028-3908 |
DOI: | 10.1016/0028-3908(95)00068-H |