Nuclear calmodulin/62 kDa calmodulin-binding protein complexes in interphasic and mitotic cells
We report here that a 62 kDa calmodulin-binding protein (p62), recently identified in the nucleus of rat hepatocytes, neurons and glial cells, consists of four polypeptides showing pI values between 5.9 and 6.1. By using a DNA-binding overlay assay we found that the two most basic of the p62 polypep...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 1994-12, Vol.107 ( Pt 12) (12), p.3601-3614 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report here that a 62 kDa calmodulin-binding protein (p62), recently identified in the nucleus of rat hepatocytes, neurons and glial cells, consists of four polypeptides showing pI values between 5.9 and 6.1. By using a DNA-binding overlay assay we found that the two most basic of the p62 polypeptides bind both single- and double-stranded DNA. The intranuclear distribution of calmodulin and p62 was analysed in hepatocytes and astrocyte precursor cells, and in proliferating and differentiated astrocytes in primary cultures by immunogold-labeling methods. In non-dividing cells nuclear calmodulin was mostly localized in heterochromatin although it was also present in euchromatin and nucleoli. A similar pattern was observed for p62, with the difference that it was not located in nucleoli. p62/calmodulin complexes, mainly located over heterochromatin domains were also observed in interphasic cells. These complexes remained associated with the nuclear matrix after in situ sequential extraction with nucleases and high-salt containing buffers. In dividing cells, both calmodulin and p62 were found distributed over all the mitotic chromosomes but the p62/calmodulin aggregates were disrupted. These results suggest a role for calmodulin and p62 in the condensation of the chromatin. |
---|---|
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.107.12.3601 |