The choice of resuspension medium for isolated rat liver nuclei: effects on nuclear morphology and in vitro transcription

Standard protocols for in vitro transcription assay (nuclear run-off) include 10-40% (v/v) glycerol (of various ionic strength) in the medium used for resuspension/storage of the isolated nuclei. In the present work the morphological and functional properties of nuclei isolated from rat liver have b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular biochemistry 1994-10, Vol.139 (2), p.149-157
Hauptverfasser: Strand, R, Bøe, R, Flatmark, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Standard protocols for in vitro transcription assay (nuclear run-off) include 10-40% (v/v) glycerol (of various ionic strength) in the medium used for resuspension/storage of the isolated nuclei. In the present work the morphological and functional properties of nuclei isolated from rat liver have been studied as a function of the content of glycerol, sucrose and inorganic ions (K+ and Mg2+) in the resuspension medium. In contrast to earlier reports, glycerol was found not to be essential to maintain morphological integrity and RNA polymerase activity in frozen/stored nuclei. Nuclear pellets, resuspended and stored in isoosmotic sucrose media, were found to give morphologically intact and transcriptionally active nuclei. Furthermore, these nuclei displayed a higher specific hybridization signal for the differentially expressed genes encoding peroxisomal beta-oxidation enzymes, relative to the total RNA synthesis, than nuclei resuspended and stored in a hyperosmotic glycerol-containing medium. The concentrations of inorganic ions were also found to affect nuclear morphology. Flow cytometry indicated DNA leakage from nuclei at insufficient concentrations of K+ and Mg2+, and high ionic strength favoured aggregation and disintegration of nuclei. Our findings indicate that quantitative results from nuclear run-off experiments should be interpreted with caution until the process of transcription in isolated nuclei is better understood.
ISSN:0300-8177
DOI:10.1007/BF01081738