Platelet size distribution measurements as indicators of shear stress-induced platelet aggregation

The mechanisms underlying shear stress-induced platelet aggregation (SIPA) were investigated by measuring changes in the platelet size distributions resulting from the exposure of human platelet-rich plasma (PRP) to well-defined shear stresses in a modified viscometer. Exposure of PRP to a shear str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 1994-11, Vol.22 (6), p.653-659
Hauptverfasser: SLACK, S. M, JENNINGS, L. K, TURITTO, V. T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mechanisms underlying shear stress-induced platelet aggregation (SIPA) were investigated by measuring changes in the platelet size distributions resulting from the exposure of human platelet-rich plasma (PRP) to well-defined shear stresses in a modified viscometer. Exposure of PRP to a shear stress of 100 dyne/cm2 for 1 min at 37 degrees C resulted in the loss of single platelets, an overall shift in the distribution to larger particle sizes, and the generation of platelet fragments. Treatment of PRP prior to shearing with a monoclonal antibody directed against platelet glycoprotein (GP) IIb-IIIa (integrin alpha IIb beta 3) at a concentration that completely inhibited ADP-induced platelet aggregation also inhibited SIPA. Furthermore, incubation of PRP with a recombinant fragment of von Willebrand factor (vWF) that abolishes ristocetin-induced platelet agglutination significantly inhibited but did not eliminate SIPA. Pretreatment of PRP with the tetrapeptides RGDS or RGDV, which constitute the GP IIb-IIIa peptide recognition sequences on fibrinogen and vWF, almost completely blocked platelet aggregation at 100 dyne/cm2, whereas the negative control peptide RGES had no discernible effect. Finally, incubation of PRP with a monoclonal antibody directed against the platelet vitronectin receptor (integrin alpha v beta 3) did not affect SIPA. These results indicate that both GP IIb-IIIa and GP Ib, the latter through its interaction with vWF, are required for SIPA at 100 dyne/cm2; that the interaction of GP IIb-IIIa with its adhesive ligands under shear stress can be inhibited by RGD-containing peptides; and that the vitronectin receptor on platelets, which shares the same beta 3 subunit as GP IIb-IIIa, plays no role in SIPA.
ISSN:0090-6964
1573-9686
DOI:10.1007/BF02368290