Immunocytochemical localization of mammalian GnRH (gonadotropin-releasing hormone) and chicken GnRH-II in the brain of the European silver eel ( Anguilla anguilla L.)

Using specific antibodies for the two molecular forms of gonadotropin-releasing hormone (GnRH) present in the European eel, Anguilla anguilla, (mammalian GnRH, mGnRH, and chicken GnRH II, cGnRH-II), we employed immunocytochemistry to determine the distribution of these two peptides in the brain and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical neuroanatomy 1994-10, Vol.7 (4), p.227-241
Hauptverfasser: Montero, Maïté, Vidal, Bernadette, King, Judy A., Tramu, Gérard, Vandesande, Frans, Dufour, Sylvie, Kah, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using specific antibodies for the two molecular forms of gonadotropin-releasing hormone (GnRH) present in the European eel, Anguilla anguilla, (mammalian GnRH, mGnRH, and chicken GnRH II, cGnRH-II), we employed immunocytochemistry to determine the distribution of these two peptides in the brain and in the pituitary. The results indicate that mGnRH and cGnRH-II are localized in different neurons: mGnRH-immunoreactive (ir) perikaria were observed in the olfactory bulbs, the junction between olfactory bulbs and telencephalon (nucleus olfactoretinalis), the telencephalon, the preoptic region and the mediobasal hypothalamus. These cell bodies are located along a continuum of ir-fibers that could be traced from the olfactory nerve to the pituitary. Mammalian GnRH-ir fibers were detected in many parts of the brain (olfactory bulbs, ventral telencephalon, hypothalamus, optic tectum, mesencephalon) and in the pituitary. Chicken GnRH-II-ir cell bodies were detected in the nucleus of the medial longitudinal fasciculus of the midbrain tegmentum, but only scattered fibers could be detected in different parts of the brain. The pituitary exhibited very few cGnRH-II-ir fibers, contrasting with an extensive mGnRH innervation. These results are in agreement with our previous data obtained in the same species using specific radioimmunoassays for mGnRH and cGnRH-II. They demonstrate a differential distribution of the two forms of GnRH in the brain of the eel, as in the brain of some other vertebrate species, and suggest differential physiological roles for the two GnRH forms in the eel. They also provide information concerning the evolution of the GnRH systems in vertebrates.
ISSN:0891-0618
1873-6300
DOI:10.1016/0891-0618(94)90015-9