‘Increased calcium-current’ hypothesis of brain aging
Based on evidence that high Mg 2+ counteracts age-related declines in synaptic plasticity, and that aged rat hippocampal neurons exhibit prolonged Ca 2+-dependent K + currents, it is proposed that an underlying cause of altered Ca 2+ homeostasis during brain aging may be an increased membrane conduc...
Gespeichert in:
Veröffentlicht in: | Neurobiology of aging 1987-07, Vol.8 (4), p.346-347 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 347 |
---|---|
container_issue | 4 |
container_start_page | 346 |
container_title | Neurobiology of aging |
container_volume | 8 |
creator | Landfield, Philip W. |
description | Based on evidence that high Mg
2+ counteracts age-related declines in synaptic plasticity, and that aged rat hippocampal neurons exhibit prolonged Ca
2+-dependent K
+ currents, it is proposed that an underlying cause of altered Ca
2+ homeostasis during brain aging may be an increased membrane conductance to Ca
2+. An apparent Ca
2+-mediated inactivation of Ca
2+ current, which was recently described in hippocampus, could account for some of the contradictions in the literature. |
doi_str_mv | 10.1016/0197-4580(87)90074-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77695152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0197458087900741</els_id><sourcerecordid>77695152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-90cce030603ef7d0d0c323d5811bc672f8ca4c9bef8fa09c82c6d14f9a4f0bf63</originalsourceid><addsrcrecordid>eNp9kM9O3DAQh60KBFvaNyhSDgi1h9BxnPjPBQmhtiAhcWnPljMZg1E2WewEaW_7GO3r8SQk3dUeOc1hvt9vRh9jXzhccODyO3Cj8rLS8FWrbwZAlTn_wBa8qnTOS6MO2GKPHLOPKT3BDCl5xI6ELJSoYMHM6-bvbYeRXKImQ9diGJc5jjFSN7xu_mWP61U_PFIKKet9VkcXusw9hO7hEzv0rk30eTdP2J-fP35f3-R3979ur6_uchRaDrkBRAIBEgR51UADKArRVJrzGqUqvEZXoqnJa-_AoC5QNrz0xpUeai_FCTvf9q5i_zxSGuwyJKS2dR31Y7JKSVPxqpjAcgti7FOK5O0qhqWLa8vBzsbsrMPOOqxW9r8xy6fY6a5_rJfU7EM7RdP-bLd3afLjo-swpD2mBZ-a5uuXW4wmFy-Bok0YqENqQiQcbNOH9_94A-8wiLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77695152</pqid></control><display><type>article</type><title>‘Increased calcium-current’ hypothesis of brain aging</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Landfield, Philip W.</creator><creatorcontrib>Landfield, Philip W.</creatorcontrib><description>Based on evidence that high Mg
2+ counteracts age-related declines in synaptic plasticity, and that aged rat hippocampal neurons exhibit prolonged Ca
2+-dependent K
+ currents, it is proposed that an underlying cause of altered Ca
2+ homeostasis during brain aging may be an increased membrane conductance to Ca
2+. An apparent Ca
2+-mediated inactivation of Ca
2+ current, which was recently described in hippocampus, could account for some of the contradictions in the literature.</description><identifier>ISSN: 0197-4580</identifier><identifier>EISSN: 1558-1497</identifier><identifier>DOI: 10.1016/0197-4580(87)90074-1</identifier><identifier>PMID: 3627350</identifier><identifier>CODEN: NEAGDO</identifier><language>eng</language><publisher>London: Elsevier Inc</publisher><subject>Aging - metabolism ; Aging - physiology ; Animals ; Biological and medical sciences ; Brain - metabolism ; Brain - physiopathology ; Calcium - metabolism ; Cell Membrane - metabolism ; Central nervous system ; Electrophysiology ; Fundamental and applied biological sciences. Psychology ; Homeostasis ; In Vitro Techniques ; Neurons - metabolism ; Rats ; Vertebrates: nervous system and sense organs</subject><ispartof>Neurobiology of aging, 1987-07, Vol.8 (4), p.346-347</ispartof><rights>1987</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-90cce030603ef7d0d0c323d5811bc672f8ca4c9bef8fa09c82c6d14f9a4f0bf63</citedby><cites>FETCH-LOGICAL-c386t-90cce030603ef7d0d0c323d5811bc672f8ca4c9bef8fa09c82c6d14f9a4f0bf63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0197458087900741$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8319002$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3627350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Landfield, Philip W.</creatorcontrib><title>‘Increased calcium-current’ hypothesis of brain aging</title><title>Neurobiology of aging</title><addtitle>Neurobiol Aging</addtitle><description>Based on evidence that high Mg
2+ counteracts age-related declines in synaptic plasticity, and that aged rat hippocampal neurons exhibit prolonged Ca
2+-dependent K
+ currents, it is proposed that an underlying cause of altered Ca
2+ homeostasis during brain aging may be an increased membrane conductance to Ca
2+. An apparent Ca
2+-mediated inactivation of Ca
2+ current, which was recently described in hippocampus, could account for some of the contradictions in the literature.</description><subject>Aging - metabolism</subject><subject>Aging - physiology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Brain - metabolism</subject><subject>Brain - physiopathology</subject><subject>Calcium - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Central nervous system</subject><subject>Electrophysiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Homeostasis</subject><subject>In Vitro Techniques</subject><subject>Neurons - metabolism</subject><subject>Rats</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0197-4580</issn><issn>1558-1497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM9O3DAQh60KBFvaNyhSDgi1h9BxnPjPBQmhtiAhcWnPljMZg1E2WewEaW_7GO3r8SQk3dUeOc1hvt9vRh9jXzhccODyO3Cj8rLS8FWrbwZAlTn_wBa8qnTOS6MO2GKPHLOPKT3BDCl5xI6ELJSoYMHM6-bvbYeRXKImQ9diGJc5jjFSN7xu_mWP61U_PFIKKet9VkcXusw9hO7hEzv0rk30eTdP2J-fP35f3-R3979ur6_uchRaDrkBRAIBEgR51UADKArRVJrzGqUqvEZXoqnJa-_AoC5QNrz0xpUeai_FCTvf9q5i_zxSGuwyJKS2dR31Y7JKSVPxqpjAcgti7FOK5O0qhqWLa8vBzsbsrMPOOqxW9r8xy6fY6a5_rJfU7EM7RdP-bLd3afLjo-swpD2mBZ-a5uuXW4wmFy-Bok0YqENqQiQcbNOH9_94A-8wiLs</recordid><startdate>19870701</startdate><enddate>19870701</enddate><creator>Landfield, Philip W.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19870701</creationdate><title>‘Increased calcium-current’ hypothesis of brain aging</title><author>Landfield, Philip W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-90cce030603ef7d0d0c323d5811bc672f8ca4c9bef8fa09c82c6d14f9a4f0bf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Aging - metabolism</topic><topic>Aging - physiology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Brain - metabolism</topic><topic>Brain - physiopathology</topic><topic>Calcium - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Central nervous system</topic><topic>Electrophysiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Homeostasis</topic><topic>In Vitro Techniques</topic><topic>Neurons - metabolism</topic><topic>Rats</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Landfield, Philip W.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neurobiology of aging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Landfield, Philip W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>‘Increased calcium-current’ hypothesis of brain aging</atitle><jtitle>Neurobiology of aging</jtitle><addtitle>Neurobiol Aging</addtitle><date>1987-07-01</date><risdate>1987</risdate><volume>8</volume><issue>4</issue><spage>346</spage><epage>347</epage><pages>346-347</pages><issn>0197-4580</issn><eissn>1558-1497</eissn><coden>NEAGDO</coden><abstract>Based on evidence that high Mg
2+ counteracts age-related declines in synaptic plasticity, and that aged rat hippocampal neurons exhibit prolonged Ca
2+-dependent K
+ currents, it is proposed that an underlying cause of altered Ca
2+ homeostasis during brain aging may be an increased membrane conductance to Ca
2+. An apparent Ca
2+-mediated inactivation of Ca
2+ current, which was recently described in hippocampus, could account for some of the contradictions in the literature.</abstract><cop>London</cop><pub>Elsevier Inc</pub><pmid>3627350</pmid><doi>10.1016/0197-4580(87)90074-1</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0197-4580 |
ispartof | Neurobiology of aging, 1987-07, Vol.8 (4), p.346-347 |
issn | 0197-4580 1558-1497 |
language | eng |
recordid | cdi_proquest_miscellaneous_77695152 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Aging - metabolism Aging - physiology Animals Biological and medical sciences Brain - metabolism Brain - physiopathology Calcium - metabolism Cell Membrane - metabolism Central nervous system Electrophysiology Fundamental and applied biological sciences. Psychology Homeostasis In Vitro Techniques Neurons - metabolism Rats Vertebrates: nervous system and sense organs |
title | ‘Increased calcium-current’ hypothesis of brain aging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%98Increased%20calcium-current%E2%80%99%20hypothesis%20of%20brain%20aging&rft.jtitle=Neurobiology%20of%20aging&rft.au=Landfield,%20Philip%20W.&rft.date=1987-07-01&rft.volume=8&rft.issue=4&rft.spage=346&rft.epage=347&rft.pages=346-347&rft.issn=0197-4580&rft.eissn=1558-1497&rft.coden=NEAGDO&rft_id=info:doi/10.1016/0197-4580(87)90074-1&rft_dat=%3Cproquest_cross%3E77695152%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77695152&rft_id=info:pmid/3627350&rft_els_id=0197458087900741&rfr_iscdi=true |