Uncoupling oxygen transfer and electron transfer in the oxygenation of camphor analogues by cytochrome P450-CAM. Direct observation of an intermolecular isotope effect for substrate C-H activation
The hydroxylation of (1R)-camphor by cytochrome P450-CAM involves almost complete coupling of electron to oxygen transfer. Modifications at C-5 of camphor, the normal site of hydroxylation by P450-CAM, lead to as much as 98% uncoupling of electron and oxygen transfer as well as to decreases in the r...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1995-11, Vol.270 (47), p.28042-28048 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hydroxylation of (1R)-camphor by cytochrome P450-CAM involves almost complete coupling of electron to oxygen transfer. Modifications at C-5 of camphor, the normal site of hydroxylation by P450-CAM, lead to as much as 98% uncoupling of electron and oxygen transfer as well as to decreases in the rate of electron uptake (up to 10-fold) and the rate of oxygenated product formation (up to 210-fold). Two modes of uncoupling are seen: (a) two-electron uncoupling in which the decrease in oxygenated product formation is balanced by increases in H2O2 formation and (b) four-electron "oxidase" uncoupling where the NADH/O2 ratio has changed from one to nearly two and relatively little H2O2 is formed. Both enantiomers of 5-methylenylcamphor are two-electron uncouplers, while (1R)- and (1S)-5,5-difluorocamphor and (1R)-9,9,9-d3-5,5-difluorocamphor are four-electron uncouplers. An intermolecular isotope effect of 11.7 is observed for oxygenation of C-9 in (1R)-5,5-difluorocamphor. With this substrate, the significant decrease in the rate of oxygenated product formation combined with the large isotope effect suggest that the rate-limiting step has switched from electron to oxygen transfer. |
---|---|
ISSN: | 0021-9258 |
DOI: | 10.1074/jbc.270.47.28042 |