Uncoupling oxygen transfer and electron transfer in the oxygenation of camphor analogues by cytochrome P450-CAM. Direct observation of an intermolecular isotope effect for substrate C-H activation

The hydroxylation of (1R)-camphor by cytochrome P450-CAM involves almost complete coupling of electron to oxygen transfer. Modifications at C-5 of camphor, the normal site of hydroxylation by P450-CAM, lead to as much as 98% uncoupling of electron and oxygen transfer as well as to decreases in the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1995-11, Vol.270 (47), p.28042-28048
Hauptverfasser: Kadkhodayan, S, Coulter, E D, Maryniak, D M, Bryson, T A, Dawson, J H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hydroxylation of (1R)-camphor by cytochrome P450-CAM involves almost complete coupling of electron to oxygen transfer. Modifications at C-5 of camphor, the normal site of hydroxylation by P450-CAM, lead to as much as 98% uncoupling of electron and oxygen transfer as well as to decreases in the rate of electron uptake (up to 10-fold) and the rate of oxygenated product formation (up to 210-fold). Two modes of uncoupling are seen: (a) two-electron uncoupling in which the decrease in oxygenated product formation is balanced by increases in H2O2 formation and (b) four-electron "oxidase" uncoupling where the NADH/O2 ratio has changed from one to nearly two and relatively little H2O2 is formed. Both enantiomers of 5-methylenylcamphor are two-electron uncouplers, while (1R)- and (1S)-5,5-difluorocamphor and (1R)-9,9,9-d3-5,5-difluorocamphor are four-electron uncouplers. An intermolecular isotope effect of 11.7 is observed for oxygenation of C-9 in (1R)-5,5-difluorocamphor. With this substrate, the significant decrease in the rate of oxygenated product formation combined with the large isotope effect suggest that the rate-limiting step has switched from electron to oxygen transfer.
ISSN:0021-9258
DOI:10.1074/jbc.270.47.28042