TAP associates with a unique class I conformation, whereas calnexin associates with multiple class I forms in mouse and man

To define the rules governing de novo assembly of the trimeric class I complex, we have identified the class I folding/assembly intermediates associated with calnexin or TAP, using both human and mouse cell lines. To better characterize the class I H chain structure associated with TAP, mouse mAb th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 1995-11, Vol.155 (10), p.4726-4733
Hauptverfasser: Carreno, BM, Solheim, JC, Harris, M, Stroynowski, I, Connolly, JM, Hansen, TH
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To define the rules governing de novo assembly of the trimeric class I complex, we have identified the class I folding/assembly intermediates associated with calnexin or TAP, using both human and mouse cell lines. To better characterize the class I H chain structure associated with TAP, mouse mAb that distinguish open (64-3-7+) vs folded (30-5-7+) Ld heavy (H) chains were used. We report here that open forms of Ld are uniquely and specifically associated with TAP and that the conformational change in the class I H chain coincident with peptide binding induces TAP release. Chimeric Ld/Q10 displayed TAP association, demonstrating that soluble class I molecules can bind TAP. As previously reported, beta 2m was found to be required for H chain association with TAP. Interestingly, beta 2m was associated with TAP in the human class I-negative cell line LCL 721.221, suggesting that beta 2m can bind to TAP before class I H chain. In contrast to TAP, which binds a specific class I conformation, calnexin was detected in association with multiple forms of both mouse and human class I. Most significantly, we show for the first time that beta 2m-assembled forms of human as well as mouse class I molecules interact with calnexin. Based on these findings, we propose a model for the sequential assembly of class I heterotrimers and their respective interactions with TAP and calnexin.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.155.10.4726