A1-receptor-mediated effect of adenosine on the release of acetylcholine from the myenteric plexus : role and localization of ecto-ATPase and 5'-nucleotidase

No attempt has been made so far to classify the subtypes of presynaptic inhibitory adenosine receptors located in the myenteric plexus and to localize ecto-ATPase and 5'-nucleotidase in the intestine. The release of [3H]acetylcholine and smooth muscle responses to acetylcholine were measured an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 1995-07, Vol.67 (1), p.159-168
Hauptverfasser: NITAHARA, K, KITTEL, A, LIANG, S. D, VIZI, E. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:No attempt has been made so far to classify the subtypes of presynaptic inhibitory adenosine receptors located in the myenteric plexus and to localize ecto-ATPase and 5'-nucleotidase in the intestine. The release of [3H]acetylcholine and smooth muscle responses to acetylcholine were measured and the effect of selective adenosine receptor ligands was studied using field-stimulated isolated longitudinal muscle strips of guinea-pig ileum. Release of ATP and its hydrolysis rate were also measured using the luciferin-luciferase technique. A histochemical method combined with electron microscopy was used for localization of ecto-ATPase and 5'-nucleotidase, enzymes responsible for destruction of extracellular ATP, ADP and AMP. Subtype-selective A1-receptor agonists and antagonists inhibited and enhanced, respectively, the release of acetylcholine associated with neuronal activity. A significant amount of ATP was released in response to electrical stimulation and administration of carbamylcholine. The release of ATP was inhibited by atropine and 4-diphenylacetoxy-N-methylpiperidine methiodide, an M3-receptor antagonist. Hydrolysis of ATP was rapid and resulted in an accumulation of extracellular adenosine involved in presynaptic A1-receptor-mediated inhibition of acetylcholine release. While the inhibitory effect of adenosine and ATP was significantly potentiated by dipyridamol, an adenosine uptake blocker, that of 2-ms ATP was not. The effect of ATP was not competitively antagonized by 8-cyclopentyl-1,3-dipropylxanthine, a selective A1-receptor antagonist. In conclusion, axon terminals of cholinergic interneurons are equipped with inhibitory A1- and P2 gamma-receptors. Therefore, both adenosine and ATP control the release of acetylcholine through these receptors. ATP is mainly released from the smooth muscle in response to stimulation of M3-muscarinic receptors by endogenous acetylcholine (cascade transmission [Vizi E. S. et al. (1992) Neuroscience 50, 455-465]) and is rapidly hydrolysed by ecto-ATPase localized on the surface of the smooth muscle and axon terminals producing ADP and AMP, and by 5'-nucleotidase present only on the surface of smooth muscle cells producing adenosine.
ISSN:0306-4522
1873-7544
DOI:10.1016/0306-4522(94)00585-S