Regulatory volume decrease in a renal distal tubular cell line (A6). I. Role of K+ and Cl

Changes in volume of A6 epithelial cells were monitored by recording cell thickness (Tc). The response of Tc to a reduction of the basolateral osmolality from 260 to 140 mosmol/kg was recorded while transepithelial Na+ transport was inhibited by 20 microM amiloride. With Cl--containing bathing media...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pflügers Archiv 1995-10, Vol.430 (6), p.936-944
Hauptverfasser: De Smet, P, Simaels, J, Van Driessche, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Changes in volume of A6 epithelial cells were monitored by recording cell thickness (Tc). The response of Tc to a reduction of the basolateral osmolality from 260 to 140 mosmol/kg was recorded while transepithelial Na+ transport was inhibited by 20 microM amiloride. With Cl--containing bathing media, this osmotic challenge elicited a rapid rise in Tc followed by a regulatory volume decrease (RVD). Substitution of SO4(2-) or gluconate for Cl- markedly reduced the RVD, whereas cells completely maintained their ability to regulate their volume after replacing Cl- by NO3(-). A conductive pathway for Cl- excretion is suggested, which is insensitive to NPPB [5-nitro-2-(3-phenylpropylamino)benzoic acid], an inhibitor of some types of Cl- channels. Ba2+ (5 or 20 mM) reduced the RVD. A more pronounced inhibition of the RVD was obtained with 500 microM quinine, a potent blocker of volume-activated K+ channels. K+-induced depolarization of the basolateral membranes of tissues incubated with SO4(2-)-containing solutions completely abolished the RVD. Noise analysis in the presence of Ba2+ showed the activation of an apical K+ conductive pathway. These results demonstrate that cell volume regulation is controlled by processes involving Cl- and K+ excretion through conductive pathways.
ISSN:0031-6768
DOI:10.1007/BF01837407