Evaluation of myocardial perfusion and function by single photon emission computed tomography

Although planar radionuclide techniques provide accurate, noninvasive measurements of myocardial perfusion and function that are of proven clinical value in the evaluation of the cardiac patient, they are limited by poor object contrast and superimposition of surrounding structures. Due to incomplet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semin. Nucl. Med.; (United States) 1987-07, Vol.17 (3), p.200-213
Hauptverfasser: Cerqueira, Manuel D., Harp, George D., Ritchie, James L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although planar radionuclide techniques provide accurate, noninvasive measurements of myocardial perfusion and function that are of proven clinical value in the evaluation of the cardiac patient, they are limited by poor object contrast and superimposition of surrounding structures. Due to incomplete angular sampling and significant longitudinal distortion, limited angle tomography did not solve these problems. Single photon emission computed tomography (SPECT) can acquire scintilation information over very small angles of rotation and, thus, improve both object contrast and delineation of overlying or adjacent structures without distortion. The early SPECT systems were cumbersome, dependent on individual user developed software, and had extremely long acquisition and processing time. Improved camera design, new software algorithms, and the use of array processors have simplified and standardized quality control, decreased processing time, and minimized the number of user interventions. New image display formats and quantitative methods of analysis have made interpretation less cumbersome, more reliable and highly reproducible. Cardiac SPECT has been used with thallium-201 and gated blood pool imaging in both research and clinical applications and shown an improvement over planar methods of acquisition.
ISSN:0001-2998
1558-4623
DOI:10.1016/S0001-2998(87)80034-X