Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate

Coexistence of three microbial populations engaged in pure and simple competition is not possible in a chemostat with time-invariant operating conditions under any circumstances. It is shown that by periodic variation of the chemostat dilution rate it is possible to obtain a stable coexistence state...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences 1995, Vol.129 (2), p.111-142
Hauptverfasser: Lenas, Petros, Pavlou, Stavros
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue 2
container_start_page 111
container_title Mathematical biosciences
container_volume 129
creator Lenas, Petros
Pavlou, Stavros
description Coexistence of three microbial populations engaged in pure and simple competition is not possible in a chemostat with time-invariant operating conditions under any circumstances. It is shown that by periodic variation of the chemostat dilution rate it is possible to obtain a stable coexistence state of all three populations in the chemostat. This is accomplished by performing a numerical bifurcation analysis of a mathematical model of the system and by determining its dynamic behavior with respect to its operating parameters. The coexistence state obtained in the periodically operated chemostat is usually periodic, but cases of quasi-periodic and chaotic behavior are also observed.
doi_str_mv 10.1016/0025-5564(94)00056-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77584251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0025556494000566</els_id><sourcerecordid>17079383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-bdc265401e8ddd9695e706e5e663031ac88c581fc0cf2072964fc8d1a988ef923</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EKtPCG4DkBUJlkWLH_5tKaMSfVKkbWFse-4YxJHGwnZa-PQkzmiVdeXG_c3X9HYReUXJFCZXvCWlFI4Tkl4a_I4QI2cgnaEO1Mg2jjD9FmxPyHJ2X8pMQqiiVZ-hMCW5aqjbo1zbBn1gqjB5w6nDdZwDs0zBBjeMPPESf0y66Hk9pmntXYxoLjiN22O9hSKW6iu9j3eMJckwhetf3D_jO5Yc1HmI_rxGcXYUX6Fnn-gIvj-8F-v7p47ftl-bm9vPX7YebxjNJa7MLvpWCEwo6hGCkEaCIBAFSMsKo81p7oWnnie9aolojeed1oM5oDZ1p2QV6e9g75fR7hlLtEIuHvncjpLlYpYTmraCPglQRZZhmC8gP4CKjlAydnXIclj9aSuxahl1N29W0Ndz-K8PKJfb6uH_eDRBOoaP9Zf7mOHdl8dZlN_pYThiTCyZW7PqAwSLtLkK2xce1sBAz-GpDiv-_4y9w_qb6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17079383</pqid></control><display><type>article</type><title>Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Lenas, Petros ; Pavlou, Stavros</creator><creatorcontrib>Lenas, Petros ; Pavlou, Stavros</creatorcontrib><description>Coexistence of three microbial populations engaged in pure and simple competition is not possible in a chemostat with time-invariant operating conditions under any circumstances. It is shown that by periodic variation of the chemostat dilution rate it is possible to obtain a stable coexistence state of all three populations in the chemostat. This is accomplished by performing a numerical bifurcation analysis of a mathematical model of the system and by determining its dynamic behavior with respect to its operating parameters. The coexistence state obtained in the periodically operated chemostat is usually periodic, but cases of quasi-periodic and chaotic behavior are also observed.</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/0025-5564(94)00056-6</identifier><identifier>PMID: 7549217</identifier><identifier>CODEN: MABIAR</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Bacteria - growth &amp; development ; Biological and medical sciences ; Computerized, statistical medical data processing and models in biomedicine ; Fungi - growth &amp; development ; Mathematics ; Medical sciences ; Microbiological Techniques ; Models and simulation ; Models, Biological ; Nonlinear Dynamics</subject><ispartof>Mathematical biosciences, 1995, Vol.129 (2), p.111-142</ispartof><rights>1995</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-bdc265401e8ddd9695e706e5e663031ac88c581fc0cf2072964fc8d1a988ef923</citedby><cites>FETCH-LOGICAL-c361t-bdc265401e8ddd9695e706e5e663031ac88c581fc0cf2072964fc8d1a988ef923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0025-5564(94)00056-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,4023,27922,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3649257$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7549217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lenas, Petros</creatorcontrib><creatorcontrib>Pavlou, Stavros</creatorcontrib><title>Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate</title><title>Mathematical biosciences</title><addtitle>Math Biosci</addtitle><description>Coexistence of three microbial populations engaged in pure and simple competition is not possible in a chemostat with time-invariant operating conditions under any circumstances. It is shown that by periodic variation of the chemostat dilution rate it is possible to obtain a stable coexistence state of all three populations in the chemostat. This is accomplished by performing a numerical bifurcation analysis of a mathematical model of the system and by determining its dynamic behavior with respect to its operating parameters. The coexistence state obtained in the periodically operated chemostat is usually periodic, but cases of quasi-periodic and chaotic behavior are also observed.</description><subject>Bacteria - growth &amp; development</subject><subject>Biological and medical sciences</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Fungi - growth &amp; development</subject><subject>Mathematics</subject><subject>Medical sciences</subject><subject>Microbiological Techniques</subject><subject>Models and simulation</subject><subject>Models, Biological</subject><subject>Nonlinear Dynamics</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EKtPCG4DkBUJlkWLH_5tKaMSfVKkbWFse-4YxJHGwnZa-PQkzmiVdeXG_c3X9HYReUXJFCZXvCWlFI4Tkl4a_I4QI2cgnaEO1Mg2jjD9FmxPyHJ2X8pMQqiiVZ-hMCW5aqjbo1zbBn1gqjB5w6nDdZwDs0zBBjeMPPESf0y66Hk9pmntXYxoLjiN22O9hSKW6iu9j3eMJckwhetf3D_jO5Yc1HmI_rxGcXYUX6Fnn-gIvj-8F-v7p47ftl-bm9vPX7YebxjNJa7MLvpWCEwo6hGCkEaCIBAFSMsKo81p7oWnnie9aolojeed1oM5oDZ1p2QV6e9g75fR7hlLtEIuHvncjpLlYpYTmraCPglQRZZhmC8gP4CKjlAydnXIclj9aSuxahl1N29W0Ndz-K8PKJfb6uH_eDRBOoaP9Zf7mOHdl8dZlN_pYThiTCyZW7PqAwSLtLkK2xce1sBAz-GpDiv-_4y9w_qb6</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Lenas, Petros</creator><creator>Pavlou, Stavros</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>1995</creationdate><title>Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate</title><author>Lenas, Petros ; Pavlou, Stavros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-bdc265401e8ddd9695e706e5e663031ac88c581fc0cf2072964fc8d1a988ef923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Bacteria - growth &amp; development</topic><topic>Biological and medical sciences</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Fungi - growth &amp; development</topic><topic>Mathematics</topic><topic>Medical sciences</topic><topic>Microbiological Techniques</topic><topic>Models and simulation</topic><topic>Models, Biological</topic><topic>Nonlinear Dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenas, Petros</creatorcontrib><creatorcontrib>Pavlou, Stavros</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenas, Petros</au><au>Pavlou, Stavros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate</atitle><jtitle>Mathematical biosciences</jtitle><addtitle>Math Biosci</addtitle><date>1995</date><risdate>1995</risdate><volume>129</volume><issue>2</issue><spage>111</spage><epage>142</epage><pages>111-142</pages><issn>0025-5564</issn><eissn>1879-3134</eissn><coden>MABIAR</coden><abstract>Coexistence of three microbial populations engaged in pure and simple competition is not possible in a chemostat with time-invariant operating conditions under any circumstances. It is shown that by periodic variation of the chemostat dilution rate it is possible to obtain a stable coexistence state of all three populations in the chemostat. This is accomplished by performing a numerical bifurcation analysis of a mathematical model of the system and by determining its dynamic behavior with respect to its operating parameters. The coexistence state obtained in the periodically operated chemostat is usually periodic, but cases of quasi-periodic and chaotic behavior are also observed.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>7549217</pmid><doi>10.1016/0025-5564(94)00056-6</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5564
ispartof Mathematical biosciences, 1995, Vol.129 (2), p.111-142
issn 0025-5564
1879-3134
language eng
recordid cdi_proquest_miscellaneous_77584251
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Bacteria - growth & development
Biological and medical sciences
Computerized, statistical medical data processing and models in biomedicine
Fungi - growth & development
Mathematics
Medical sciences
Microbiological Techniques
Models and simulation
Models, Biological
Nonlinear Dynamics
title Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coexistence%20of%20three%20competing%20microbial%20populations%20in%20a%20chemostat%20with%20periodically%20varying%20dilution%20rate&rft.jtitle=Mathematical%20biosciences&rft.au=Lenas,%20Petros&rft.date=1995&rft.volume=129&rft.issue=2&rft.spage=111&rft.epage=142&rft.pages=111-142&rft.issn=0025-5564&rft.eissn=1879-3134&rft.coden=MABIAR&rft_id=info:doi/10.1016/0025-5564(94)00056-6&rft_dat=%3Cproquest_cross%3E17079383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17079383&rft_id=info:pmid/7549217&rft_els_id=0025556494000566&rfr_iscdi=true