Subcellular localization of human monocyte interleukin 1: evidence for an inactive precursor molecule and a possible mechanism for IL 1 release

IL 1 activity, as assayed by the proliferation of responsive mouse thymocytes and a human astrocytoma cell line, was detected on the membrane of 1% paraformaldehyde-fixed activated human monocytes. Resting, unactivated monocytes did not display IL 1 activity. Maximum induction of membrane IL 1 was o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 1987-06, Vol.138 (12), p.4249-4255
Hauptverfasser: Bakouche, O, Brown, DC, Lachman, LB
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:IL 1 activity, as assayed by the proliferation of responsive mouse thymocytes and a human astrocytoma cell line, was detected on the membrane of 1% paraformaldehyde-fixed activated human monocytes. Resting, unactivated monocytes did not display IL 1 activity. Maximum induction of membrane IL 1 was obtained from monocytes treated with polyclonal activators, such as LPS or Staphylococcus aureus, whereas adherence was a weak inducer of membrane IL 1. Isolated cell compartments as plasma membranes, crude lysosomes, and crude cytosol from activated human monocytes expressed significant IL 1 activity, whereas the endoplasmic reticulum showed no IL 1 activity. Exposure to trypsin of either fixed, activated human monocytes or cell compartments from unfixed monocytes, revealed biologically active IL 1 in the membrane, crude lysosome, and crude cytosol, but not in the endoplasmic reticulum. The IL 1 activity in the purified cytosol, prepared by extraction with digitonin, was considerably increased by the trypsin treatment, whereas the increase in IL 1 activity within crude lysosomes and plasma membranes was less. The cell compartments from nonactivated monocytes did not express active IL 1 and trypsin treatment revealed no active IL 1, suggesting the absence of a pool of the trypsin-sensitive form of IL 1. The data confirm the presence of membrane-bound IL 1 in activated human monocytes and indicate that an inactive precursor molecule can be found in the cytosol of such cells. Furthermore, the absence of IL 1 activity either in its active form or as the inactive precursor in the endoplasmic reticulum suggests that IL 1 is not a conventionally secreted protein. Because IL 1 was found in the cytosol as a precursor and in the lysosomal fractions in an active form, these data suggest that after the synthesis and processing of the cytosolic precursor, the 17-kda IL 1, is released via lysosomal vesicles.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.138.12.4249