A model of status epilepticus based on electrical stimulation of hippocampal afferent pathways
A new model of status epilepticus has been developed in the unanesthetized rat. The model involves repetitive tetanic stimulation of hippocampal afferent pathways. Pulse trains were delivered according to a fixed schedule (0.2 to 0.4-ms monophasic rectangular pulses, 20 Hz, stimulus current adjusted...
Gespeichert in:
Veröffentlicht in: | Experimental neurology 1987, Vol.96 (3), p.681-691 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new model of status epilepticus has been developed in the unanesthetized rat. The model involves repetitive tetanic stimulation of hippocampal afferent pathways. Pulse trains were delivered according to a fixed schedule (0.2 to 0.4-ms monophasic rectangular pulses, 20 Hz, stimulus current adjusted for maximal synaptic response in area CA3 of the hippocampus, 10-s train duration, 30-s intertrain interval) through electrodes chronically implanted in the angular bundle or fimbria. CA3 pyramidal cells responded to each stimulus in the train with little or no decrement. When 10 consecutive trains each produced 30 s of hippocampal afterdischarge, stimulation was terminated and self-sustained electrographic seizure activity was monitored. This procedure was repeated until it yielded at least 15 min of self-sustained seizure activity. Status epilepticus occurred in about 85% of subjects within less than 7 h. Selfsustained electrographic seizures were associated with limbic motor seizures and with brain lesions that resembled Ammon's horn sclerosis. This model holds promise for analyzing the biochemical and physiological bases of seizures, status epilepticus, and neurocal cell death, because the timing of these events during the stimulation protocol is fairly predictable and because seizures are self-sustaining without the need for drugs, toxins, or prior kindling. |
---|---|
ISSN: | 0014-4886 1090-2430 |
DOI: | 10.1016/0014-4886(87)90229-9 |