A cochlear model using feed-forward outer-hair-cell forces

A linear (frequency-domain) model of the cat cochlea (implemented in both 1- and 2-dimensional versions) has been developed which uses outer hair cell (OHC) forces in a geometry which includes the longitudinal (base-to-apex) tilt of the outer hair cells (OHCs). When positive (contractile) real OHC f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hearing research 1995, Vol.86 (1), p.132-146
Hauptverfasser: Geisler, C.Daniel, Sang, Chunning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A linear (frequency-domain) model of the cat cochlea (implemented in both 1- and 2-dimensional versions) has been developed which uses outer hair cell (OHC) forces in a geometry which includes the longitudinal (base-to-apex) tilt of the outer hair cells (OHCs). When positive (contractile) real OHC force-constants are used, very large (50 + dB) response peaks along with very rapidly accumulating phase lags (which can reach −50π radians) are obtained. The wider the longitudinal segmentation, the broader the peaks and the less the phase accumulation; 71-μm segmentation produced the most realistic responses. These large response peaks are achieved by a small zone of negative resistance (ca. 1 mm) just basal to the response peak and the virtual ‘zeroing’ of the basilar membrane's effective impedance over the entire peak region (ca. 2.5 mm). To produce these peaks, the OHCs generate about 25-times the incoming acoustic power. Inclusion of low-pass filtering in the model's OHC representation produces, by contrast, very unrealistic notch-and-peak displacement complexes accompanied by very large phase lags, for all segmentation widths used. However, when phase reversals of OHC forces are also added, achieved by imbedding a resonant system within the tectorial membrane, very realistic peaks and phase functions are produced. More power must, however, be generated by the OHCs (about 70-times the incoming). The end result is output which mimics quite closely the living basilar membrane's responses to low-intensity high-frequency tones.
ISSN:0378-5955
1878-5891
DOI:10.1016/0378-5955(95)00064-B