Opiates inhibit calmodulin activation of a high-affinity Ca2+-stimulated Mg2+-dependent ATPase in synaptic membranes
A high affinity Ca2+/Mg2+ ATPase has been identified and localized in synaptic membrane subfractions. This enzyme is stimulated by low concentrations of Ca2+ (less than or equal to microM) believed to approximate the range of Ca2+ in the synaptosomal cytosol (0.1 to 5.0 microM). The opiate agonist l...
Gespeichert in:
Veröffentlicht in: | Neurochemical research 1987, Vol.12 (1), p.41-48 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A high affinity Ca2+/Mg2+ ATPase has been identified and localized in synaptic membrane subfractions. This enzyme is stimulated by low concentrations of Ca2+ (less than or equal to microM) believed to approximate the range of Ca2+ in the synaptosomal cytosol (0.1 to 5.0 microM). The opiate agonist levorphanol, in a concentration-dependent fashion, inhibited Ca2+-stimulated ATP hydrolysis in lysed synaptic membranes. This inhibition was reversed by naloxone, while dextrorphan, the inactive opiate isomer, was without effect. Inhibition by levorphanol was most pronounced in a subfraction of synaptic membranes (SPM-1). The inhibition of Ca2+-stimulated ATP hydrolysis was characterized by a reduction in Vmax for Ca2+. Levorphanol pretreatment reduced the Hill coefficient (HN) of 1.5 to 0.7, suggesting cooperative interaction between the opiate receptor and the enzyme protein. Levorphanol, but not dextrorphan, also inhibited (28%) ATP-dependent Ca2+ uptake by synaptic membranes. Opiate ligand stereoisomers were tested for their effects on calmodulin stimulating of high affinity Ca2+/Mg2+ ATPase in synaptic membranes. Levorphanol (10 microM), but not the inactive stereoisomer (+)dextrorphan, significantly inhibited (35%) the calmodulin-activated Ca2+-dependent ATP hydrolysis activity in a preparation of lysed synaptic membranes. Both Ca2+-dependent and calmodulin-dependent stimulation of the enzyme in the presence of optimal concentrations of the other co-substrate were inhibited by levorphanol (35-40%) but not dextrorphan. Inhibition of ATP hydrolysis was characterized by a reduction in Vmax for both Ca2+ and calmodulin stimulation of the enzyme. Calmodulin stimulation of enzyme activity was most pronounced in SPM-1, the membrane fraction which also exhibits the maximal opiate inhibition (40%) of the Ca2+-ATPase. |
---|---|
ISSN: | 0364-3190 1573-6903 |
DOI: | 10.1007/BF00971362 |