Use of positron emission tomography (PET) in stereotactic conditions for brain biopsy

In order to take advantage of the metabolic information provided by positron emission tomography (PET) in cases of brain tumour, we have developed a technique to integrate PET images routinely in the planning of stereotactic brain biopsy. We used stereotactic PET with [18F]-labelled fluorodeoxygluco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta neurochirurgica 1995-03, Vol.134 (1-2), p.79-82
Hauptverfasser: PIROTTE, B, GOLDMAN, S, BIDAUT, L. M, LUXEN, A, STANUS, E, BRUCHER, J.-M, BALERIAUX, D, BROTCHI, J, LEVIVIER, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to take advantage of the metabolic information provided by positron emission tomography (PET) in cases of brain tumour, we have developed a technique to integrate PET images routinely in the planning of stereotactic brain biopsy. We used stereotactic PET with [18F]-labelled fluorodeoxyglucose (PET-FDG) in 38 patients undergoing brain biopsy. To evaluate the contribution of PET-FDG in guiding brain biopsy, we analyzed the diagnosis provided by the 78 stereotactic trajectories obtained in these patients. We found that stereotactic PET-FDG seemed to provide more information in cases of anaplastic astrocytomas and glioblastomas than in low-grade gliomas. Our results also show that biopsy trajectories performed in areas where increased FDG uptake is found within the lesion boundaries always provide interpretable specimens; this was not the case for trajectories guided by CT only. Therefore, the routine integration PET-FDG in the planning of stereotactic brain biopsy may lead to a reduction in sampling. Recently, we also tested consecutive stereotactic PET with [11C]-labelled methionine (PET-Met) and PET-FDG. This technique allowed us to compare accurately the tumoural glucose metabolism and protein synthesis. Our results suggest that stereotactic PET may increase the diagnostic yield of brain biopsy and may improve the understanding of PET in neuro-oncology.
ISSN:0001-6268
0942-0940
DOI:10.1007/bf01428509